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ABSTRACT

Multiple matrix sampling is a psychometric procedure in which a.
set of test-items is subdivided randomiy into subtests bf items with
each subtest administered to different subgroups of examinees selected
at random from the examinee population. Although eadh examinee rec:. rrn
only a proportion of the complete set of items, the statistical model
employed permits the researcher to estimate the mean, variance and )
frequency distribution of test scores which would have been obtained
by testing all examinees on all items. Containe& herein is a detailed
description of multiple matrix sampling. The topics covered range . from
an introductory discussion to the listing with expanded writeup of the
computer program used to analyze the data. Throughout this Report an

attempt has been made to keep the practitiomer clearly in mind.
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PRINCIPLES AND PROCEDURES OF MULTIPLE MATRIX SAMPLING

David M. Shoemaker

Introduction

Multiple matrix sampling or, more popularly, item-examinee sampling,
is a psychometric procedure whose time has come. It is the Zeitgeist.
Descriptions of multiple matrix sampling procedures and explorations into
areas of application are scattered over a multitude of technical journals.
There is no single book or article which describes, studies, and unifies i
all of this material. Yet there is a need for such a document both as a 1
reference source and as a textbook.

Although statisticians have dealt for several decades with incomplete 1
data problems in the design of experiments and data analysis, the psycho-
metrician responsible primarily for the derivation of statistical proce-
dures in mul’ iple matrix sampling and the application of such procedures
to problems in psychology and education is Frederic M. Lord. Lord and
Novick discuss multiple matrix sampling in Chapter 11 in Statistical
theories of mental test scores but the chapter does not encompass the
degree of detail and depth of explanation required by the majority of
educational research practitioners who desire to implement this research
procedure in a particular investigation. This Technical Report has
been designed to remedy this situation.

Throughout this Report an attempt has been made to keep the practi-
tioner clearly in mind. The emphasis is on the why, when, and how to
use multiple matrix sampling. The topics covered range from an intro-
duction to multiple matrix sampling to the listing with expanded writeup
of the computer program used to analyze the data. All discussione and
guidelines contained in the mc.ograph reflect theoretical and empirical
results reported in the literature as well as personal experiences of the

author in implementing multiple matrix sampling in a variety of applied i
situations. i
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Characteristics, Advantages, And Applications

Of Multiple Matrix Sampling

The majority of contemporary psychometric procedures reflect stron-
gly the original impetus of the psychometric movement, that is, the
measurement of individual differences Historically, individual differ-
ences have been investigated, and appyoprlately so, using the matched-
jtems model in which a single set of test items is administered in a
standardized procedure to all, or a sample, of the examinee population
under consideration. One exemplar of such methodology is the anthropo-
metric laboratory of Sir Francis Galton established at the International
Health Exhibition in England in 1884. Galton measured individuals rang-
ing in age from five to eighty on such dimensions as standing height,
sitting height, arm span, weight, breathing capacity and strength of
pull "to supply information on the methods, practice, and uses of human
measurement.”" Understandably so and undoubtedly for lack of a reasonable
alternative, procedures appropriate for the assessment of individual
differences have been transferred completely to investigations concerned
primarily with the measurement of group differences. An example of a
research design emphasizing the assessment of group differences is found
in an investigation which contrasts treatment effects through adminis-—
tering each treatment to a group of examinees selected randomly from the
examinee population. Given treatments A, B, and C, for example, the
researcher is interested primarily in the behavior of group A as contras-
ted with group B as contrasted with group C. Differences among individual
examinees are of little concern. The point to be made is simply this:
the methodology employed successfully in the assessment of individual
differences is neither the appropriate nor the most efficient methodology
for group assessment. Multiple matrix sampling or, more popularly,
item-examinee sampling, has been demonstrated theoretically and empir-
ically to be the appropriate procedure for group assessment and a proce-
dure superior to the matched-items model.

The matched-items model and the multiple matrix sampling model are
contrasted readily by considering the data base which would be generated
if the entire testable population o N examinees were administered the
complete set of K test items. Su a data base is illustrated in
Figure 2.1 and the arrangement is r%ferred to commonly as an item—
examinee matrix. Test items are scored dichotomously frequently and
such is the case in Figure 2.1l. For example, examinee 1 passed item 1,
failed item 2, passed items 3 and 4, and failed item 5. Within the

. v-;l'
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framework of the item-examinee matrix, the matched-items model used in

the assessment of individual differences 1is referred to as the examinee-
sampling model because all test items are administered to a subgroup of
examinees selected at random from the population of N examinees. By
contrast, multiple matrix sampling involves the joint sampling of examinee
subgroups and item subtests as i1lustrated in Figure 2,2. Data from item-
examinee sample 1 were obtained by administering a set of items selected
at random from the population of K test items and administering these
and only these items to a subgroup of examinees selected randomly from

the population of N examinees. Replicating this procedure produces
item~examinee samples 2 and 3 and suggests, concomi tantly, the derivation
of the expression ''multiple matrix sampling.' Statistics obtained from
examinee-sampling and from multiple matrix sampling are used to estimate
parameters of the N by K item-examinee matrix. It must be remembered,
however, that the N by K item—examinee matrix illustrated in Figures
2.1 and 2,2 is a hypothetical matrix the parameters of which are estimated
from the subset of data gathered in practice through examinee-sampling or
mu itiple matrix sampling.

Advantages of Multiple Matrix Sampling

A concept important in discussing the advantages of multiple matrix
sampling and one mentioned frequently herein is the standard error of
estimate. Assume that two experimental procedures have been developed
for measuring weight and each procedure is used to obtain in a standard-
ized manner 1000 independent measurements of the weight of a given object.
Hypothetical measurements so acquired have been assembled into frequency
distributions and are given in Figure 2,3. The standard error of estimate
associated with procedure M 1is the standard deviation of the 1000 values
for the weight obtained using procedure M; the standard error of esti-
mating the weight for procedure E 1is determined identically. The
difference in standard errors of estimate depicted in Figure 2,3 illus-
trates an important advantage of multiple matrix sampling over examinee-
sampling in group assessment. Lord and Novick (1968) have demonstrated
algebraically that, when subtests are constructed by sampling items
without replacement from the K-item population, the standard error in
estimating the group mean test score using multiple matrix sampling is
less than the standard error obtained with examinee—sampling. Further-
more, the minimum standard error of estimate under multiple matrix
sampling is found by administering one item to each of K random samples
of examinees. A conclusion such as this is of major significance because
the parameter of primary importance in many investigations is the group
mean test score.

To clarify this point, consider how such a result could have been
determined empirically through post mortem i tem-examinee sampling. In
post mortem item-examinee sampling, an existing N by K item~examinee
data base is taken to be the population of scores and item scores from
item-examinee samples selected randomly from this base are used to

10
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estimate parameters of interest. Although all examinees have responded
to all items, in post mortem item-examinee sampling the investigator

acts as if individual examinees had responded only to specific items,

The standard error of estimate under examinee-sampling could be approxi-
mated, for example, by selecting. at random 1000 examinee subgroups and
testing each subgroup over K items. Data from each examinee subgroup
provide an estimate of the mean score over N examinees and the standard
deviation calculated over these 1000 estimates is the standard error of
estimating the population mean under examinee-sampling. A single estimate
of the mean test score under multiple matrix sampling is obtained, for
example, by dividing randomly the set of K test items into t non-
overlapping subtests containing K/t ditems each and administering each
subtest to a subgroup of examinees gelected at random from the population
of N--examinees. A single estimate of the population mean is obtained
by pooling the t estimates obtained from each item-examinee sample.
Replicating this procedure 1000 times provides 1000 pooled estimates of
the population mean test score and hence the standard error of estimate
associated with the particular item-examinee sampling plan used. (All
computational formulas used in multiple matrix sampling are explained in
detail in Chapter IV.)

The advantages of multiple matrix sampling have thus far been focused
on the standard error of estimating the mean test score. Important also
is the expected value or mean of the estimates of the population mean
test score over replications. In Figure 2.3, the standard error of proce-
dure M 1is less than the standard error of procedure E; however, on the
average, the values obtained using procedure E are more accurate than
those obtained using procedure M (assuming that the true weight is the
value on the abscissa indicated by the pointer). A consideration such as
this prompts an examination of the mean estimate of the population mean
test score obtained under multiple matrix sampling. The results of sev-
eral empirical investigations (Johnson & Lord, 1958; Lord, 1962; Plumlee,
1964; Stufflebeam & Cook, 1967; Shoemaker, 1970a, 1970b) using post mor-—
tem item-examinee sampling support the conclusion that, on the average,
estimates of the mean test score are eXtremely accurate. (Results such
as these are to be expected since the mean of a random sample is always
an unbiased estimator of the population mean and estimates of the mean
test score obtained through multiple matrix sampling are no exception.)
Shoemaker (1970b) has demonstrated that this conclusion is appropriate,
additionally, for estimates of the population standard deviation.

In addition to the statistical advantages of multiple matrix sampling
in estimating group achievement, there are other advantages of practical
import: (a) The testing time per examinee is reduced under multiple matrix
sampling. This is, indeed, an important consideration as the time neces-
sary for testing K ditems per examinee is frequently difficult or impos-
sible to obtaia. (b) Under multiple matrix gsampling, the costs of scoring
each test are reduced. (c) Multiple matrix sampling as a procedure may
be accepted more readily in certain situations than the matched-items
design. In a company, for example, supervisors fearing that test results
may be used against their employees may be assured more convincingly if

Q ’ :l:a
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each employee takes only a part of a test and different employees take
different parts. ~(d) Given a limited amount of available testing time

per examinee, performance on a larger number of test items can be approx-
imated through multiple matrix sampling than through a matched-items design.,
(e) With multiple matrix sampling it is possible to estimate simultane-
ously parameters of several tests. To the examinee, the test so construc-
ted is merely another test; however, to the test constructor, the comnos-
ite is a collection of several tests each having parameters estimated
through multiple matrix sampling.

Limitations of Multiple Matrix Sampling

Although advantages of multiple matrix sampling are more numerous
than limitations, the latter do exist. Estimating parameters through
multiple matrix sampling assumes that the responses of an examinee to an
item sample are exactly those which would have been obtained had the
examinee responded to those items embedded in the K-item test. Although
the data available (Sirotnik, 1970; Shoemaker, 1970c) suggest that multiple
matrix sampling is relatively immune to a context effect, there is one
important exception: using multiple matrix sampling to estimate parameters
of speeded tests. In this case, an examinee's response is not indepen-
dent of the context of the test and multiple matrix sampling should not
be used.

An insidious variation of the context effect occurs when multiple
matrix sampling is used to estimate parameters for a test which is impos-
sible to administer in practice. For example, parameters of a 500-item
vocabulary test designed for grade one students could be estimated readily
through multiple matrix sampling by forming 25 subtests having 20 items
each with each subtest administered to one class of grade one students.
Although all students could respond appropriately to the 20-item test,
data from each subtest would be used to estimate the results which would
have been obtained had all grade one children taken the 500-item test.

The problem is that no individual grade one student could have tolerated
the 500-item test.,

A potentially serious limitation of multiple matrix sampling is
found in the logistics involved in giving different tests to different
subgroups of examinees. If test items are administered individually,
problems are minimal. If, however, each item requires oral instructions
by the test administrator and different tests are to be distributed among
the examinees in the testing room, serious problems occur. In this sit-
uation, the examinees must be segregated and isolated according to
subtest before administering each test. If the instructions to each
item are written on the test booklet, administering different tests to
different examinees within the testing room is accomplished with rela-
tive ease.

14
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Procedural Guidelines in Multiple Matrix Sampling

Multiple matrix sampling as a procedure involves basically three
steps: (a) a K-item test 1is subdivided through random or stratified-
random sampling into subtests each having typically the same number of
items, (b) each subtest is administered to a group of examinees selected
randomly from the examinee population, and (c) test parameters are esti-
mated from subtest results. Although the procedure is described easily,
implementing it produces many interesting questions. For example: How
many subtests should be formed? To how many examinees should each subtest
be administered? Is it more appropriate to administer a few subtests
containing a large number of items or a large number of subtests contain-
ing few items? These are only a few of the questions encountered fre-
quently when using multiple matrix sampling. Described herein are general
guidelines for answering these and other related questions.

Let t denote the number of subtests, k the number of items per
subtest and n the number of examinees to which each subtest is adminis-
tered. A specific sampling plan is denoted by (t/k/n). TFor example,
(2/25/60) s (10/5/60) and 10/20/30) are three sampling plans which could
Lbe used to estimate the parameters of a 50-item test. With the first
plan, 2 subtests are formed containing 25 items each with each subtest
administered to 60 examinees; with the second plan, 10 tests with 5 items
each with each subtest administered to 60 examinees; and with the
third, 10 tests with 20 items each with each subtest administered to 30
examinees. The third plan introduces an important variable in multiple
matrix sampling, namely, the procedure used to sample items in construct-
ing subtests. With (2/25/60) and (10/5/60) subtests are formed by
sampling test items without replacemeni: from the pool of 50 items. With
(10/20/30), items are sampled without replacement for a given subtest but
with replacement among subtests; consequently, an individual item will
often be included in more than one subtest, but no item will be included

twice in the same subtest. The rule is this: if the product tk 1is
less than or equal to K, the sampling of items for subtests is always
without replacement; when tk is greater than K, the sampling of items
is without replacement for each subtest and with replacement between
subtests. Selecting items for two subtests using the latter sampling
procedure is demonstrated easily with a deck of cards numbered consecu-
tively from 1 to K: (a) the deck of K cards is shuffled thoroughly,
(b) k cards are selected at random from the deck with the numbers on
the cards indicating those items to be included in subtest i, (c) the k
cards are returned to the deck, (d) the card deck is reshuffled, and

" 15
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(e) k cards are selected at random for subtest j. Although a multitude
of sampling plans are possible, it is generally the case that tk is
equal to or greater than K.

Although constructing subtests having overlapping item subsets is
desirable in that it increases the number of observations acquired by
the sampling plan (and, hence, decreases generally the standard error
of estimate associated with that sampling plan), it is of critical im-
portance that, when ¢tk 1s greater than K, tk be an integer multiple
of K, and items are sampled randomly but subject to the restriction
that each item appear with equal frequency among subtests. With
(10/20/30), for example, the multiple is 4 and each of the 50 items
should appear in exactly 4 subtests. Any deviation from this procedure
results in a marked increase in the standard error of estimate.

An important characteristic of any sampling plan used in multiple
matrix sampling is the number of observations acquired by that plan.
Defining one observation as the score received by one examinee on one
item, the number of observations acquired by a sampling.plan is equal
to the product tkn. For example, 3000 observations are acquired by
(2/25/60) and by (10/5/60) while 6000 observations are acquired by
(10/20/30) . The number of observations per sampling plan is an impor-

tant concept in multiple matrix sampling and one mentioned frequently
herein.

In multiple matrix sampling, a variety of sampling plans are
possible with the selection of a particular sampling plan being typically
the result of both practical and statistical considerations. Determining
the relative merits of individual sampling plans is accomplished readily
through a consideration of the standard error of estimate for each
parameter for each sampling plan. Shoemaker (1970a, 1970b, 1971a, 1971b)
has determined empirically, through post mortem i tem—examinee sampling,
standard errors of estimate for selected parameters as a function of
variations in (a) the number of observations acquired by the sampling
plan, (b) t, k, and n, (c) test reliability of the normative distribution
of test scores, (d) the variance of item difficulty indices, and (e)
degree of skewness in the normative test score distribution. The
following are general guidelines in multiple matrix sampling resulting
from these and other investigations (Shoemaker & Osburn, 1968; Osburn,
1969) :

1. The number of observations acquired by the sampling plan is an
important variable. In general, as the number of observations
increases, the standard error of estimating parameters decreases.
(The major exception to this guideline occurs when guideline 4
is not followed.)

2. Increasing the number of examinees per subgroup is leas. effective
in reducing the standard error of estimate.

16
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'3, For normal normative distributions, increases in the number of

items per subtest are most effective in reducing standard errors
of estimate; for negatively-skewed distributions, increases in
the number of subtests are most effective.

4. When tk 1s greater than K, tk should be an integer multiple
of K and items should be selected randomly but subject to the
restriction that among subtests each item appears with equal
f . -

requency R

5. In general, fewer observations are required to estimate parameters
of a skewed normative distribution than of a normal normative —_
distribution.

6. If subtest items are being selected according to a stratified-
random sampling plan instead of a random sampling plan, items
should be stratified according to difficulty level and not
according to content.

7. As the reliability of the normative distribution of test scores
increases, it becomes increasingly difficult to estimate parameters.
For this reason, it is true generally that a relatively large
number of observations is required by the sampling plan when
estimating parameters of a distribution having high reliability.
This is true also when the variance of item difficulty indices
is large.

8. If no information concerning the normative distribution of test
scores is available, select a sampling plan having the number of
subtests equal to the square root of the total number of test items
(rounded to the nearest integer) with each subtest having approx-
imately the same number of test items.

Guidelines such as these are concerned primarily with relative
standard errors of estimate in multiple matrix sampling. Although Lord
and Novick (1968, equation 11.12.3) have determined algebraically the
standard error of estimating the mean proportion correct score in
multiple matrix sampling given nonoverlapping random samples of dichot-
omously-scored items drawn without replacement from the item population,
the standard error of estimate for any parameter using any and all
sampling plans may be determined easily and effectively through use
of the simulation model for multiple matrix sampling described in detail
in Chapter V.

Multiple Matrix Sampling Step by Step

Step 1t Construct or select the K~item test. If possible, assemble
the items into strata according to difficulty level.

Step 2: Determine the limitations and restrictions which must be
imposed upon the test administration procedure.

17
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Step 3: Select a sampling plan which is appropriate in view of
the known characteristics of the normative distribution, the restrictions
and limitations inherent in the test administration procedure, and

guidelines 1 through 8.

Step 4: Administer subtests to examinees in a standardized
procedure. Avoid confounding subtests with examinee subgroups, i.e.,
make every attempt to have examinee subgroups homogeneous.

Step 5: Compute estimates of parameters using equations 4.1, 4.2,
4.4, 4.5, 4.7 and 4.9 with the computer program given in Appendix A.

18
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IV
Computational Formulas in Multiple Matrix Sampling

Computational formulas used in multiple matrix sampling are applied
easily in practice and are detailed and sequenced appropriately in the
following application of the procedure. It should be noted initially
that all formulas assume uniform item scoring procedures; for example,
some items cannot be scored dichotomously and other trichotomously.

An Application of Multiﬁle Matrix Sampling

A spelling program is being designed for kindergarten students and
the word and rule content of this program is to be related closely to the
reading program used by these students. Before constructing such a program
it is necessary to determine the spelling proficiency of those students
who have used the reading program but have not had formal spelling instruc-
tion on the related words. Although there were 78 unique words introduced
in the particular reading program under consideration, technical consider-
ations dictated that only words having regular spellings be included in
the word population. As a result, the original word population was reduced
from 78 words to 50 words. The modified word population was then subdi-
vided through random sampling without replacement into 5 subtests. contain-
ing 10 words each. (This is one of many procedures which could have been
used. Alternative procedures are discussed in detail in Chapter III.)
Three kindergarten classes were selected randomly from the pool of 9
classes. Students within each class were divided at random into 5 groups
and each group was assigned at random to one of the 5 subtests. Each test
was administered individually. All items were scored dichotomously (1 =
pass, 0 = fail) with the results of each subtest given in Tables 4.1
through 4.5.

Estimating Parameters From Subtest Results

In multiple matrix sampling, subtest results are of secondary
interest. Of chief concern is the estimation of parameters, that is,
the results which would have been obtained had all students been tested
over the entire set of 50 items comprising the word population. The
results of each subtest, however, can be used to provide estimates of
parameters of interest. For example, from subtest 1 it is possible to

20
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obtain an estimate of several parameters, i,e., u (the population mean
test score), o (the standard deviation of test scores), g2 (the variance
of test scores), u3 (the third moment about the arithmetic mean) , uy (the
fourth moment about the arithmetic mean), agq (the coefficient of relia-
bility), g1 (the index of skewness), and go (the degree of kurtosis).

All of these parameters are not independent, but each can be estimated
from the results of one subtest. In multiple matrix sampling, multiple
subtests are used and, hence, multiple estimates of each parameter are
obtained. A more accurate estimate of each parameter is obtained by
combining or pooling the estimates obtained from each subtest.

Although it is possible to estimate several parameters, the majority
of investigations are interested primarily in estimating U, 02, and 0]
The appropriate formulas for estimating these parameters from subtest i
are

o, = ’ | %.1)

k.
1
2 .
niK{(K - l)si - (K - kiia vi}

A
(o)

He N

= k. (k (4.2)
(G - Dy - D
snd
A g - Az__‘
A ui
a . 1 ® %.3)
= 1 - s .
21i K-1 3%
i
where,

K = the total number of items in the population,
k. = the number of items in subtest i,

i
n, = the number of examinees receiving subtest i,
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Ty = the mean test Score on subtest i,

n{
s% = L (T - Ti)z/ni, the variance of test scores on subtest i,

and

2. v, = the sum of the k1 item variances in subtest 1i.
TIf items are scored dichotomously, the variance
of item j is equal to pj(l - pj) where pj is
the proportion of examinees answering item ]

correctly.

The computational formula for 02 was derived from an associated
formula given by Sirotnik (1970) in which it was assumed that the number
of examinees and number of items in the population were both finite.
Formula 4.2 is based on the assumption that the number of examinees in
the population is infinite and that the number of items in the popula-
tion is finite.

The results of each subtest provide an estimate of u and 02 and
a pooled estimate of u and 2 1is obtained by combining the t subtest
estimates using

t A
\ _Z) oH,
p'pooled - > 0. .4
i
and t
> 0,62 o .
A2 i1
c = —— (4.5)
pooled :
220
i
where,
01 = niki’ (4.6)
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the numEE;F;;/;£servations obtained from subtest i. If the total number

t
of examinees Iny = N is less than 500 , should be multiplied

22
c,pooled
by (N - 1)/N. Pooled estimates of u and o2 for the word spelling project
are given in Table 4.6, The pooled estimate of the mean test score on
the 50-item test is 20.4287. On the basis of this result, the conclusion
was made that kindergarten students can spell correctly approximately

40 per cent of words having regular spelling in the reading program with-
out having had any formal spelling instruction,

Although individual estimates of the reliability of the 50-item
test could have been obtained from each subtest and then combined into a
single estimate, a simpler procedure for estimating ojj is one using the
pooled estimates of u and 02, Specifically,

A2
A ppooled
A K upooled - K
¥y = o 1 - =3 . (4.7)
cpooled

For the word spelling test <oy for the 50-item test was estimated from
4.7 to be .9479. The exact computations are given in Table 4.7 where
agqy is computed as an intermediate step in approximating the normative
test score distribution with a probability distribution.

Direct Calculation of SE(upooled)

A more meaningful interpretation of ﬁpooléd is possible if SE(ﬁpooled)
is known. Although SE(ﬁpooled) and SE(apooled) may be determined for all

sampling plans through use of the simulation model described in Chanter V,
Lord and Novick (1968, equation 11.12.3) have derived an equation for
determining the standard error of the mean proportion correct score given
(a) items are scored dichotomously, (b) items are sampled randomly and
without replacement from the item population, and (c) examinees are sampled
randomly and without repla :ement from the examinee population. Restrictions
(b) and (c) produce item subsets and examinee subgroups which are nonover-
lapping, i.e., no item is found in more than one subtest and no examinee

28
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Table &.6

Pooled Estimates Of Parameters From Subtest Results

Number of A A2
Subtest Observations n k K
1 180 18 10 17.7780 158.1778
2 140 14 . 10 26.4285 53.8430
3 130 13 10 23,4615 230.0509
4 130 13 10 24,6155 265,5789
5 120 . 12 10 9.5835 169.3378
700 70

>

' (180)(17.7780) + (140)(26.4285) + ... + (120)(9.5835)

“pooled ~ 180 + 140 + ... + 120
= 20,4287
A2 . (180)(158.1778) + (140)(53.8430) + ... + (120)(169.3378)
pooled 18C + 140 + ... + 120
= 172.5178
N L 500

152.5178 [¢70 - 1)/70]

170.0533

29




i{s found in more than one subgroup. Equation 11.12.3 when modified to give
the standard error of the mean test score is

A 1 1
VAR(p'pooled) B l:t:kn-‘\ E(K - 1)(N - 1)]

1) - kn(t - 1)} +

[k® N oi {(K - kK)(n
(4.8)

K o2 {(N - n)(k - 1) - kn(t - 1)} +

LK -8 {(K - k)N

n) + kn(t - 1},

where K refers to the total number of test items,
N to the total number of examinees,
o2 to the population variance,
o2 to the variance of item difficulty indices, and
0 to the estimate of the population mean obtained
from multiple matrix sampling.
In practice, 02 and og are estimated; t,'k, and n are parameters
defining the sampling plan. Of course, SE(ﬁpqoled) = VAR(ﬁpooled)%
No equation is given by Lord and Novick for SE(apooled) under multiple

matrix sampling.

Approximating the Normative Distribution

In addition to estimating individual parameters through multiple
matrix sampling, it is possible to estimate the entire normative frequency
distribution of test scores which would have been obtained by testing all
students on all 50 items. The negative hypergeometric distribution has
been shown by Keats and Lord (1962) to provide a reasonably good fit for
a wide variety of test score distributions when the test score is the
number of correct responses. The negative hypergeometric distribution
is z function of the mean test score }, the variance of the test scores
o2and the total number of items in the test K. Lord (1962) and Shoemaker
(1970) have demonstrated st the negative hypergeometric distribution

:gi)':.i";
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eters estimated by multiple matrix sampling can be used satis-
ymative distributions of number correct test
metric distribution is

with param

factorily to approximate no
scores. The formula for the negative hypergeo

c(-K)T(a)T
for T =0, 1, 2, «co 5, K (4.9)

h(T) =
(-b)TTl

where,

A

= - -+ &
a (-1 1ﬁle)u'pooled

A
= - - +
b a 1 Kﬁ121

pL K

(a + 3)[K]

noting that,

oK) b - 1 - 2) ees (b - KHD)

(a)T = a(a +1)(a *+2) ... (a+T-=-1)

(a)g = bEO] =1

T! = T(T - 1)(T - 2) s e (2)(1)0

Using estimates of u and o2 obtained from the word spelling

project, the calculations necessary for approximating the normative

ERIC 31
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distribution on the 50-item test with the negative hypergeometric distri-
bution are illustrated in Table 4.7 with complete results given in Table
4.9. The computations involved in estimating u and o2 and approxi-

‘mating thlfe normative distribution by the negative hypergeometric distri-

bution are more laborious than difficult. A computer program has been
developed which performs all the necessary computations and output for
the word spelling project is given in Tables 4.8 and 4.9. A detailed
writeup and listing of the computer program is given in Appendix A.

An examination of the estimates of parameters given in Table 4.8
suggests that individual subtests were not equally difficult, particularly
subtest 5. Although the words included in subtest 5 were selected randomly
from the 50-word population and administered to subgroups of examinees
selected at random from each class, the results merely confirm the well-
known fact that extreme cases do ocrur through random sampling. An obvious
advantage, then, of multiple matrix sampling over any individual item-
examinee sample is that the estimates obtained in the former case are
based on a composite and hence less subject to sampling extremities.

Stated more precisely, the standard error associated with the pooled
estimate of the mean test score is less than the standard error associated
with any of the estimates of the mean obtained from subtests. The results
for © and o given in Chapter V illustrate adequately the difference

in standard errors of estimate described here.

The relative frequencies given in Table 4.9 are actually the
individual probabilities associated with all possible test scores. For
example, the probability of an examinee spelling correctly 20 words out
of 50 is .023. An equally appropriate interpretation is that 2.3 per
cent of the examinees in the population would spell correctly 20 words.

As should be the case, the relative frequencies in Table 4.9 sum to

unity. An estimate of the number of examinees receiving each test score
is cbtained by multiplying the total number of examinees in the population
by the probability associated with each test score. For example, if there
were 1000 students in the population of kindergarteners, 23 students would
be expected to spell correctly 20 of the 50 words on the test.

Although equations 4.1 and 4.2 are appropriate for all item scoring
procedures, the negative hypergeometric distribution is used only when
the test score is the number of cgQrrect answers. This is, of course,
the case when items are scored 1 = pass and 0 = fail. When items are
not scored dichotomously, the normative frequency. distribution may be
approximated by a Fearson curve using the first moment about the origin
and the second, third and fourth moments about the mean. There are 12
curves in the family of Pearson curves and the procedure for selecting
the appropriate curve and making the necessary calculations to approx-
imate the normative distribution are given by Elderton (1938, pp. 38-127)
and by Kendall (1952, pp. 137-145). Lord (3.960) has suggested that a
Pearson Type 1 curve may be an appropriate selection. It should be men-
tioned, however, that such a procedure is not a casual undertaking. Before
such procedures can be used, computational formulas for estimating u3 and
1, must be derived. Guidelines for estimating these moments are given by
Hooke (1956) .
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Table 4.7

Computations For Negative Hypergeometric Distribution

>

pp = (50/(50 = 1))(1 - (20.4286 - 20.42862/50)/170,0552) = .9479

a = (-1 + 1/.9479)(20.4287) = 1.1226
b = =1.1226 = 1 + 50/.9479 = 50.6250
50.62500 50] 50.6250(50.6250-1)(50.6250-2) ... (50.6250-49)
¢ = = = ,0214
51.7476-50]  51.7476(51.7476-1)(51.7476-2) ... (51.7476-49)
(=50)4(1.1226) (1)(1)
h(0) = (.0214) = (.0214) —— = ,0214
(~50.6250), O: (1)(1) ;
h(l 0214 e A = (.0214 (-30)(1.1226) 0237
(1) = (.0214) (-50.6250), 1! = G ) (-50.6250)(1) °
(-50),(1.1226), (~50) (~49)(1.1226){2.1226)
h(2) = (.0214) = (,0214) = ,0248

(-50.6250)2 2} (-50.6250)(~49.6250)(2)
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Table 4.8

Estimates Of Parameters For Word Spelling Project

Estimate Of Parameter

Sample Mean Variance
¢

1 17.7777770 158.1844600
2 26.4285710 53.8461540
3 23.4615380 230.0498600
4 24.6153840 265.5769300
5 9.583%331 169.3392200
POOLED MEAN = 20,4285710

POOLED VARIANCE = 170,0552200

34
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Table 4.9

Estimated Relative Frequency Per Test Score On The 50-Item Test Using
The Negative Hypergeometric Distribution

Relative Relative
Score Frequency Score Frequency
0 .0213564 -
1 .0236785 26 .0216387
2 .0248133 27 .0211852
3 .0254953 28 .0207151
4 .0259319 29 .0202280
5 .0262115 30 .0197236
6 .0263806 31 .0192016
7 .0264667 32 .0186613
8 .0264872 33 .0181020
9 . 0264544 34 .0175230
10 .0263766 35 .0169233
11 .0262602 36 .0163017
12 .0261101 37 .0156567
13 .0259298 38 .0149867
14 .0257223 39 .0142896
15 . 0254900 40 .0135627
16 .0252347 41 .0128031
17 .0249578 42 .0120066
18 .0246608 43 .0111683
19 .0243444 44 .0102815
20 . 0240095 45 . 0093369
21 .0236568 46 .0083215
22 .0232868 47 .0072158
23 .0228997 48 . .0059869
24 .0224960 49 . 0045728
25 .0220756 50 .0028209




Computational Irregularities

In estimating parameters from subtests having a small number of
items and examinees, it happens frequently that &2 1is equal to zero
or is less than zero for one or more subtests. ¢Although uninterpretable,
estimates such as taese should not be discarded or set equal to zero in
computing 02 . It must be remembered that results of any subtest

pooled

are relatively unimportant; what is important is the accuracy of the
pooled estimate of 0OF Any procedure which ignores part of the data
produces an estimate of o2 which is biased, i.e., it would not ap-
proach the true value even if the number of subtests was increased
indefinitely., Sirotnik (1970) has verified empirically this conclusion.
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Computer Simulation of Multiple Matrix Sampling

In evaluating a particular sampling plan or contrasting the relative
merits of several plans used in multiple matrix sampling, statistics of
primary importance are the standard error of estimate and the mean estimate
for each parameter given that sampling plan. For example, if an investi-
gator were estimating parawzters of a 50-item test using multigle matrix
sampling, one sampling plan might be (5/20/30) ; another, (10/10/60). 1In
the first sampling plan, the 50-item test is subdivided through random
sampling without replacement within subtests and with replacement between
subtests into 5 subtests containing 20 items each with each subtest admin-
istered to 30 examinees; in the second plan, similarxly, 10 subtests con-
taining 10 items each with each subtest administered to 60 examinees.

The sampling plan selected will be used only once in an investigation;
yet, in celecting the particular plan to be used, the investigator must
be aware of the standard error of estimate associated with each sampling
plan under consideration. Lord and Novick (1968, equation 11.12.3) have
derived algebraically the standard error of estimating the mean propor-
ticu correct score given nonoverlapping random samples of dichotomously-
scored items drawn without replacement from the item population. No
comparable equation is given by them for computing the standard error of
estimating the population standard deviation under multiple matrix sam-
pling. What is required, however, are equations for estimating standard
errors of estimate per parameter for all potentially useful sampling plans,
not just those plans involving nonoverlapping random samples of items
from the item population. The computational difficulties in such a task
are not minor; however, the results of such equations are approximated
readily and to any desired degrez of accuracy through the computer
simulation model described herein. The remaining sections of this chapter
are devoted to a detailed discussion of a simulation model for multiple
matrix sampling. The reader uninterested in such matters can bypass
safely this chapter without a loss of continuity. However, several of
the guidelines for multiple matrix sampling given in Chapter III are
based on results obtained through use of this model and, it must be
stressed, that the results obtained are only as good as the simulation
model used.

-33—
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Simulated Post Mortem Sampling

The algorithm used within the model is described most appropriately
as simulated post mortem multiple matrix sampling. In post mortem
sampling, item~examinee samples are taken from an N by K data base’
obtained by testing N examinees over K items; in simulated post
mortem sampling, the N by K data base is computer-generated by a
simulation model. Generating data bases with prescribed parameters is
sssential in investigating hypotheses in multiple matrix sampling be-
cause it is difficult, if not impossible, to locate existing data bases
having the necessary variation in test parameters. For example, if the
standard error of estimate were being investigated as a function of vari-
ation in item difficulty indices for a given test reliability and test
length, it would be difficult locating data bases with o% = .00, .05,

and .08 all having ogg = .80 and the same test length. Such a problem

is, however, handled easily with a simulation model. As an overview,

the computer program generates a data base, selects multiple item-

examinee samples from this data base, performs all calculations necessary
for estimating parameters, and replicates this procedure as many times

as specified before computing the standard error of estimate and mean
estimate per paraweter over replications. The computer program is re-
stricted to data bases having dichotomously-scored items and, in multiple
matrix sampling, to subtests having an equal number of items and examinees.

Generation of Data Bases -

In simulating multiple matrix sampling, generation of the data base
is of primary importance. Although one procedure might be that of gener-
ating an N by K matrix and storing it in memory, a more appropriate
procedure is one in which the item scores on the K-item test are gener-
ated for one and only one individual at a time. All that is stored in
memory are the K ditem scores for one individual. The procedure, how-
ever, for generating item scores must be one such that, over any number
of hypothetical examinees generated, the items and test scores have
prescribed characteristics. In this procedure, the population of examinees
N 1is countably infinite. The test parameters gsubject to manipulation
within the program are: (a) K, the number of items in the item popula-
tion, (b) ¥, the mean test score over examinees, (c¢) 02, the variance of
test scores over examinees, (d) 0oy, the coefficient of reliability for
the K-item test, (e) o%, the variance of the item difficulty indices,

where, the difficulty index p; for item i is the proportion of examinees
answering correctly item i, and (£) the degrue of skewness in the distri-
bution of test Scores for examinees on the K-item test. In the computer
program, values for K, u &and og must be specified by the user. The max-

imum value for K is 150; u is, therefore, restricted to values 0 < u < K.
If %90 is specified, 62 ig determined by the well-known relationship
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o = - (5.1)

Q

derived originally by Tucker (1949). 1If o2 is specified by the user, a2Q
is determined consequently. Such an arrangement has been incorporated
within the program to facilitate hypothesis testing where either ¢2 or
apg 1is to be controlled across levels of K. Of course, P = /K is deter-
mined once u has been specified. The degree of skewness in the normative
distribution is simulated by using the lognormal or normal probability
distribution functions to generate test score distributions. The lognor-
mal distribution with two parameters is used to generate positively-skewed
test score distributions while the three parameter lognormal distribution
is used for negatively-skewed distributions. The lognormal distribution
is described in detail by Aitchison and Brown (1957) and a detailed expla-
nation of simulating stochastic variates with the lognormal distribution
is given by Naylor, Balintfy, Burdick and Chu (1966) . The normal density
function is, of course, used to simulate normal test score distributions.
Density functions for the two and three parameter lognormal probability
distributions are, respectively,

2. _ {1a(1) -}
A (T| w,o7) = TdVEﬁ expl - n(202 ] (5.2)
, 1 {1n(r) - b}
Ao (T'] T'=K-T,u, = - 5.3)
(1"} o) - expl — (

forT = 0, l, 2, s e o t] K.

For the normal distribution, the demsity function is

1 T - w)?

N(T‘U‘ 362) = -C?V__E-ﬁ exp [- —;—Z—'-], (5.4)

w -
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The constants u and g2 in 5.4 are equal, respectively, to the desired
mean and variance in the normative distribution; however, in 5,2 and 5.3,
u and o2 are a function of the desired mean and variance in the norma-=
tive distribution. If the desired mean and variance of the normative
distribution are denoted, respectively, by o and 8, U and ¢2 in 5.2
and 5.3 are computed by

m@Ze? + 1)
W =1ln@) - (5.5)
2

and

o2 = 1n@*e? + 1). (5.6)

The.appropriate derivations for 5.5 and 5.6 are given by Naylor, Balintfy,
Burdick and Chu (1966). If =z is a random normal deviate N(0,1), test
scores T having lognormal distributions are generated by

Ti = exp (W +—ozi) i=1,2, ... N (5.7)

for positively-skewed distributions, and

T, =K - exp (¥ +°zi) 1=1,2, ... , N (5.8)

for negatively-skewed distributions. For nurmal distributions,

T, =u +oz; 1=1,2, ... , N ' (5.9)

The T scores computed in 5.7, 5.8 and 5.9 will be continuous variables.
Because items are scored dichotomously, the T score must be rounded to

the nearest integer value. The midpoint of each score interval is taken

to be that point above which one-half of the area in that score interval

is found. This point is found by integrating via trapezcid rule the area
under the appropriate normal or lognormal curve. If the T score is

J;Bdf;‘ ) Q!lf
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equal to or greater than the midpoint, the score is rounded up; if not,
the score is rounded down.

Item scores are related to test scores. Specifically, if Xij is
K - —
the item Score for examinee i on item j, % xij = Tj' Also, p = T/K., 1If

ci ijs greater than zero, individual item difficulty indices are generated

by

p. =pt+to =z, i=1,2, ... , K (5.10)

where z_ is a random normal deviate. When 0§ is not equal to zero, the
1

2

distribution of Py values will be approximately normal. I& op is equal

to zero, p; = B for all values of i. With skewed distributions, ci is
typically 0 <« cg < .001 and, because of this, 0§ is set to zero for all

skewed distributions generated by the simulation model., After the item
difficulty indices have been generated within the program, deciding if an
examinee passes or fails each item is relatively simple. Item difficulty
indices are computed for all items generated. An examinee "passes' those
jtems which will bring the computed item difficulty indices most closely
to the desired item difficulty indices. For example, if the computed itemn
difficulty for item i were less than the desired item difficulty for item i,
examinee j would pass item i; if the computed difficulty were equal to or
greater than the desired item difficulcey, he "fails" item i. 1In the
program, the desired item difficulty indices are sorted in descending
crder. If, in following the algorithm from the first through the Kth

K K
item, X xij # Tj’ the first Tj -z Xij = d items not already passed by

examinee j are scored by the program as items answered correctly by him.

The validity of the simulation model is found in its ability to gener-
ate the desired data base. Two eXamples of data bases generated by the model
are given in Tables 5.1 and 5.2. Although the discrepancies in Table 5.2 are
minor, it should be noted that the magnitude of the discrepancies decreases
with increases in K.

Simulation of Multiple Matrix Sampling

Subtests are constructed within the program by sampling at random items
from the K-item population. For example, if K equals 50 and a (5/10/36G)

@1;&;
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Table

5.1

Results Obtained From Simulation Model For 3000 Examinees When

With The Normative Distribution Distributed Normally

20

Parameter Input Output
K 20 20
B 10.0000 10.0150
2
g computed
oY
20 .8000 .7999
P . 5000 .5010
ci . 0800 .0799
N 3000 3000
Item Difficulty Indices Obtained Frequency Dist.
Item Input Output Score Frequency
0 16
1 . 987 .987 1 17
2 .901 .901 2 36
3 .857 .857 3 47
4 .782 .787 4 96
5 .750 .750 5 136
6 .737 .738 6 182
7 .702 .703 7 225
8 .634 .634 8 307
9 .565 .566 9 266
10 .518 .519 10 328
11 .458 458 11 327
12 442 442 12 256
13 430 430 13 210
14 .374 374 14 191
15 .275 .275 15 122
16 .208 .209 16 104
17 .139 .140 17 67
18 .113 114 18 38
19 .112 .113 19 16
20 .026 .026 20 13
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Table 5.2

Results Obtained From Simulation Model For 3000 Examinees When K = 20
With The Normative Distribution Negatively-Skewed (Three Parameter

Lognormal Distribution)

Parameter Input Output
o K 20 20
¥ 17.5000 17.6150
o? _ computed
020 .8000 .7570
P .8750 .8810
Gi . 0000 . 0002
N 3000 3000
Item Difficulty Indices Obtained Frequency Dist.
Item Input Output Score Frequency
0 16
1 .875 .930 1 3
2 .875 ,908 2 2
3 .875 .838 3 5
4 .875 .876 4 4
5 .875 .876 5 3
6 .875 .876 .6 3
7 .875 .876 7 6
8 .875 .876 8 7
9 .875 .876 9 8
1C .875 .87€ 10 15
11 .875 .876 11 32
12 .875 .876 12 32
13 .875 .876 13 43
14 .875 .876 14 - 84
15 .875 .876 15 135
16 .875 .376 16 200
17 .875 .876 _ 17 352
18 .875 .876 18 670
19 .875 .875 19 885
20 .875 .875 20 495

44




sampling plan were used, 5 subtests would be formed by sampling without
replacement from the 50-item pool 10 items for each subtest. If (10/10/30)
were used, 10 subtesis would be formed containing 10 items each; however,
the sampling plan for items requires sampling without replacement for each
subtest but with replacement between subtests. In (10/10/30), several
jtems will be common to more than one subtest. Taking (10/10/30) as an
example, item scores on the K-item test would be generated by the program
for 300 examinees. For subtest 1, the data from the first 30 examinees
would be processed for only those .items included in subtest 1. An iden-—
tical procedure is followed for subtest 2 through subtest 10. The compu-
tations peiformed on each item—examinee sample are identical to those
outlined in Chapter IV. If the user opts T replications of a particular
sampling plan, r pooled estimates of each parameter will be produced and
the standard error of estimate per parameter with that sampling plan is
the standard deviation of the r pooled estimates for each parameter.
Sample output for the (10/15/30) plan with 5 replications is given on

page 42 through 49 for the normal normative distribution case.

Uses for the Simulation Model

It is anticipated that the computer program for simulating multiple
matrix sampling described herein, and listed with expanded writeup in
Appendix B, will facilitate readily a detailed examination of the relative
merits of one or more sampling plans in multiple matrix sampling. In
multiple matrix sampling questions asked frequently are "How do I do it?"
and "If I sample this way, how accurate will the estimates be?'" Questions
such as these are answered easily through use of the simulation model.

The results obtained from the program are reasonable to the degree that
the normative distributions can be described adequately by the normal

and lognormal probability distributioms. It is commonly known that achieve-
ment test scores are frequently normaliy distributed. However, the scores
on criterion-referenced tests, i.e., end-of-program tests, are frequently
markedly negatively-skewed and resemble closely a three parameter log-
normal distribution. It is anticipated that the simulation model will
prove to be an asset in test theory and test construction courses permit-
ting the student to have a working familiarity with sampling procedures
used in multiple matrix sampling.
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Hypothesis Testing and Multiple Matrix Sampling

Parameters estimated thrrugh multiple matrix sampling are integrated
easily into a variety of hypothesis testing procedures. For example, one-
sample and two-sample t-tests can be performed readily with estimates of
4 and o© obtained by multiple matrix sampling. Specifically,

A
l'Lpooled "~ Hstandard
t. . = 6.1)
df"N"l 82 /N)12 (
¢ pooled
and
A A ( ;
B - K - (g =By,
1pooled 2pooled 1
Cag=N_+N -2 = T 6.2
12 A2 ~2 %
) pooled pooled 1 1

S
N N l
4N - 1 2
Nl N2 2

The t—test for the difference between two independent means given in
6.2 can be extended to completely randomized and factorial analysis of
variance designs where the dependent variable is a mean test score. Al-
though analysis of variance designs with mean scores as the dependent
variable are found inirequently in the literature, the frequently occuring
circumstances in which mean scores are preferabie to raw Scores in such
analyses are detailed most succinctly by Peckhan, Glass and Hopkins (1969).
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Consider the design in which the relative merits of four experimental
training programs are being contrasted through end-of-program test scores
obtained from students participating in each procedure. Through an analy-
sis of pretest scores given to all students, ten classes have been selec-
ted for each training program such that, across training programs, the
four groups of 10 classes are approximately homogeneous at the start of
instruction. The mean achievement test score for each class is estimated
easily through multiple matrix sampling. The statistical layout and
sources of variation are given in Table 6.1. If an additional variable,
such as school district, were added to the design, the statistical lay-
out and sources of variation are modified slightly as seen in Table 6.2.
After the measurement on the dependent variable is accomplished, compu-
tations in the analysis of variance proceec in the usual manner. The
novelty herein is in estimating the class mean test score through multiple
matrix sampling.

2
Ly

Testing homogeneity of variance hypotheses of the form o7 = 0% =

A o2 is accomplished for two variances by
/
i
pooled
F =— 6.3
(N;-1,N,-1) — ,, ) (6.3)
%2
pooled

and for more than two variances by, for example,

A
52
largest
Fmax =L, (6.4)
smzllest

Tables for the Fmax statistic have beer r~nstructed by Hartley and are

given in Winer (1962, p. 653). Another simple test for homogeneity of
variance developed by Cochran which lends itself to multiple matrix
sampling is

%
o



s 2
o
largest

c =——/2—— (6.5)
2.0

and the necessary tables for the C statistic are given in Winer (1962,
p. 654). The procedures in 6,3, 6.4, and 6.5 are not the only tests
possible, but they are used frequently and illustrate the concept.

The normative distribution approximated by the negative hypergeo-
metric distribution with parameters estimated through multiple matrix
sampling provides the basic data for several goodness—-of-fit tests. For
example, the Kolmogorov-Smirnov one-sample test (Siegel, 1956, pp. 47-
52) provides a test of the hypothesis that the approximated distribution
of scores came from a population of scores having a specified theoretical
distribution. The test involves specifying the cumulative frequency
distribution which would occur under the theoretical distribution and
comparing that with the approximated cumulative frequency distribution.
The cumulative frequency distributiom is, of course, obtained readily
after the individual frequencies have been determined by multiplying

_,, the number of examinees in the population by the relative frequency per

' test score approximated by the negative hypergeometric distribution. A
simple extension of the Kolmogorov-Smirrov one-sample test is the
Kolmogorov-Smirnov two-sample test (Siegel, 1956, pp. 127-136) which is
concerned with the agreement between two approximated frequency distri-
butions.

The tests of hypotheses mentioned herein do not constitute an ex-
haustive listing of statistical tests to which estimates of parameteis
obtained through multiple matrix sampling are applicable. The intent is
merely that of suggesting the applicability of a novel technique to tra-
ditional hypothesis testing procedures. It should be noted that the t-
tests given in 6.1 and 6.2 are to be considered conservative tests of the
hypotheses under consideration. The standard errors of estimate given
in the denominators are those for the matched-items design and there is
evidence (Osburn, 1967) suggesting that the corresponding standard errors
under multiple matrix sampling will be less. In the algebraic derivation
supporting this conclusion, Osburn was considering a form of multiple
matrix sampling in which k items were selected at-random from the pop-
ulation of items for each examinee.
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Table 6.1

Statistical Layout For One-Way Analysis Of Variance Problem With The
Dependent Variable Being A Mean Achievement Test Score Estimated Through
Multiple Matrix Sampling

Program
1 2 3 4
A A A AN )
B K B M
1pooled 11pooled 21pooled. 31pooled
A ’, A
K K B M
2pooled 12pooled 22pooled 32pooled
A A I V4
K K M M
10pooled 20poqled 3opooled 40pooled

Source Of Variation

Degrees Of Freedom

Programs 3
Classes Within Programs 36
Total 39
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Table 6.2

Statistical Layout For Factorial (Two-Way) Analysis Of Variance Problem
With The Dependent Variable Being A Mean Achievement Test Score Estimated
Through Multiple Matrix Sampling

Program

f
A ~ A A
pllpooled M‘llpooled plz!"’pooled u31pooled
District A oo cos e o
A A » A
uspooled ulspooled plzspooled u35pod1ed
A A A A
IJlepooled p116po¢:\1ed u26pooled u36pooled
District B ceo cee ceo oo
A A A A
Hq [ Han ]

pooled 20pooled 3Opooled 40pooled

Source Of Variation Degrees Of Freedom
Programs 3
Districts

Programs x Districts
Classes Within Programs x Districts 32
Total 39

i
e
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Unique Applications of Multiple Matrix Sampling

Multiple matrix sampling has been used traditionally to estimate
parameters of standardized tests where the total -test score is equal to
the sum of the item scores. TFor investigations focused primarily on
group assessment, multiple matrix sampling has been demonstrated empir~
ically to be an important and valuable procedure. Multiple matriz sam-
pling, howaver, is applicable to a broader range of research problems
than that suggested by the current literature. Four unique and important
applications of multiple matrix sampling are described in this chapter.
As is the case with most psychometric procedures and is certainly the
case with multiple matrix sampling, the range of applications is deter—
mined solely by the degree of inventiveness in the individual researcher.

Design of Experiments :

In the evaluation of instructional programs, the pre-post paradigm
is used frequently and, as is traditionally the case, an ind'vidual test
is administered to all examinees at both the start and end ¢ instruction.

Given an item population related to the instructional progr: under eval-
uation, /a research design such as this is improved easily w- the addi-

tion of multiple matrix sampling. 1In place of using the sa . test pre
and post, random or stratified-random parzllel tests are us 1 with para-
meters for both tests estimated through multiple matrix sam _ing. A
procedure such as this could be expanded further to include intermediate
testing using additional parallel tests. An example of a design such as
this and one demonstrating the concomitant benefits is given by Osburn
and Shoemaker (1968). 1In the evaluation of instructional programs it
should be noted that a researcher is seldom interested in individual test
items, individual tests, or individual examinees but is interested pri-
marily in group behavior over time with regard to some specified item
population. As such, multiple matrix sampling in conjunction with random
or stratified-random parallel tests is an ideal measurement procedure.

Estimation of Covariance and Correlation Matrices

Item and test covariance matrices (and, hence, correlation matrices)
are estimated readily through multiple matrix sampling. A modified

~56-
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sampling plan is required such that all possible pairs of items or tests
are included in one or more subtests or subbatteries. For example, con~
sider estimating the elements in a covariance matrix for a 5-item test.
To compute the covariance of Item 1 with Item 4, there must be a sub-—
group of examinees responding to both Item 1 and Item 4., If the exXxaminee
subgroup is sampled randomly from the population of examinees, COV(1, 4)
computed over those examinees is an estimate of COV(1l, 4) which would
have been obtained by testing all examinees over both items. All remain-
ing entries in the covariance matrix are estimated identically. A test
covariance matrix is determined similarly with items being replaced by
tests. A procedure such as this sets the stage for multiple matrix
sampling playing an important role in a variety of multivariate procedures
as, for example, factor analysis. Although little has been done in this
area, some important preliminary research and a few of the relevant equa-
tions for estimating parameters have been reported by Lord (1960), Ray,
Hundleby and Goldstein (1962), Knapp (1968) and Timm (1970) .

Questionnaires and Surveys

A perennial problem with questionnnaires and surveys is the disap-
pointingly low rate of completions or returns. Return rates of 20 to 30
per cent are not uncommon. Although examinees fail to return question-
naires for a multitude of reasons, one factor is undoubtedly the length
of the questionnaire and the time required to complete all questions.

If the measurement required is the proportion of examinees in each cate-
gory, results can be approximated through multiple matrix sampling by
administering questions selected randomly to a random sample of examinees.
For example, if an 8-pzge questionnaire were to be administered to all
elementary school teachers within a particular city, the questions con-
tained therein could be divided into 8 subquestionnaires (each of which
would require no more than the front of one piece of paper) with each
subquestionnaire administered to a random sample of teachers. The time
for completing each subquestionnaire is minimal and, as such, may increase
the rate of returns. The point to be made is simply this: a little data
from a large number of teachers is better than a lot of data from few
teachers. It must be remembered, however, that questions within question-
naires are interrelated frequently (If '"No' on Question 13, go to Question
20.) and complications such as these must be incorporated in constructing
subquestionnaires.

Measurement in the Affective Domain

It is frequently the case that an investigator is interested in
scaling the preferences or affect of a group of individuals for a par-
ticular set of objects. Although there are several procedures which could
be used, the method of paired-comparisons is one encountered frequently
in the literature (e.g., Snider (1960) and Holliman (1970). In the
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method of paired-comparisons, all possible combinations of the objects
taking two at a time are presented individually and for each pair the
examinee is asked to indicate his preference. For =xample, if 6 stimuli
were being scaled by the method of paired-comparisons, the test so con-
structed would contain 6(6-1)/2 = 15 items, for 12 stimuli, 66 items.
After all pairs have been administered to all examinees, the preliminary
analysis of the data involves the computation of the F-matrix and subse-
quent P-matrix. The P-matrix is the base from which the scale values per
stimulus are computed and it is in estimating the values in the P-matrix
that an application of multiple matrix sampling is found. Relevant pre-
liminary research in this area has been reported by McCormick and Roberts
(1952) , McCormick and Bachus (1952) and Bursack and Cook (1970) . If the
s stimuli are numbered consecutively from 1 to s, the F-matrix is an

s by s matrix with entries denoting the frequency with which the col-
umn stimulus was judged more favorable than the row stimulus. An example
of an F-matrix and associated P-matrix are given in Table 7.1. ™Diwviding
each entry in the F-matrix by the total number of examinees, which is in
this case equal to 17, produces the corresponding entry in the P-matrix
labeled appropriately as the proportion of examinees selecting the col-
umn stimulus over the row stimulus. In estimating the entries in the
P-matrix through multiple matrix sampling, paired-comparisons are selec-
ted at random from the pool of all possible pairs and administered to
samples of examinees selected randomly from the testable population.

Shoemaker (1971) using a post mortem item-examinee sampling design
has explored systematically the feasibility of using multiple matrix
sampling—to estimate scale values obtained by the method of paired-com-
parisons. The major conclusions reached in this investigation were that
(a) scale values can be approximated satisfactorily through multiple
matrix sampling, and (b) the similarity between the estimated scale values
and the normative scale values increases with increases in the number of
observations acquired by the sampling plan, with the converse true. The
specific procedure used to estimate the P-matrix from subtest results is
detailed in the following 5 steps. Each step is illustrated with results
from one replication of a (3/10/15) sampling plan. (In the Shoemaker
investigation, the data base consisted of responses made by 407 primary
grade students to a 1l5-item test designed to scale degree of affect to
6 stimuli.) '

Step 1: Three subtests containing 10 items each are formed by sam-
pling items randomly and without replacement within subtests but with
replacement between subtests.

Subtest . Items

L o Y T ST 51 A R Y S D O S AT G S A L 4B S L P P i S e e e S PR LS 6 R A R s, T

8 14 1 9 6 2 3 12 15 10
14 6 3 12 4 1 2 11 13 10
% 13 2 9 6 11 & 15 3 12
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Step 2: Three subgroups of examinees containing 15 examinees each

are formed by sampling randomly and without veplacement from the 407-
examinee population.

Subgroup ’ Examinees :
1 359 22 280 272 139 206 169 321 323 23 271 66 221 109 100
2 345 367 281 390 366 70 361 250 154 168 8 138 279 335 399
3 342 220 276 125 382 219 217 327 401 385 113 62 77 192 156

Step 3: Pairing subtest i with subgroup i, an f-matrix is formed
for each subtest using only the responses made by the corresponding
examinee subgroup on the items contained in that subtest. Each f-matrix
is constructed in conjunction with a link-matrix containing the code
numbers of stimuli paired within each test item. For the data base
considered herein, the link-matrix was

Test Item Stimulus Pair

01
02
03
04
05
06
07
08
09
10
11
12
13
14
i5

Nrauawlohakraw-bhamkn$~w
prOoUOCOUPOULULWLOAGONWLDN

The f-matrices for the 3 subtests used in (3/10/15) are

—. .
0 0 9 14 8

0 0 8 15 0

f-matrix 1 = 0 0 3 0 4
' 6 7 10 12 9
1 0 0 3 2

7 0 11 6 13

L o
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— - -
13 0} 5 4] 10
2 0 0 11 4
f-matrix 2 = -0 0 4 6 2
io 0} 11 11 0}
0 4 9 4 1
5 11 13 0 14
0} 0} 0 0} 7
0 0 9 14 8
f-matrix 3 = 0] 0] 6 6 4 1.
0 6 9 13 11
0 1 9 2 3
L_S 7 11 4 12 ]

Step 4: In pooling the f-matrices to obtain the P-matrix, an ac-—
counting-matrix is required to distinguish between items omitted in the
construction of subtests and items to which all examinees in a particular
subgroup responded identically. For the f-matrices given in step 3, the
accounting-matrix is

accounting-matrix =

\\:L»J\\JOOII-l
WNpDWoOoOOo
pMDWOWNN
WOWN WK

lwran:ordol
Wh W Ww
L © 1

Off-diagonal zeros are of critical importance in pooling subtest results.
In each f-matrix, £(i,j) + £(j,i) = n for those stimulus pairs contained
within the subtest and £(j,i), for example, could be zero for two reasons:
(a) the item containing stimulus pair (i,j) was not included in the sub-
test, or (b) all examinees in that particular subgroup selected stimulus

i over stimulus j. This distinction must be maintained in pooling the
f-matrices to produce the P-matrix.

Step 5: The P-matrix is formed by pooling across corresponding entries
in t! e f-matrices after each entry in the f-matrix has been divided by the
nurter of examinees in the ‘corresponding subgroup. The sum of proportions
is then divided by the corrésponding number in the accounting-matrix. As
an example, consider computing the (1,6) and (5,1) entries in the P-matrix:

(op
@



8/15 + 10/15 + 7/15
P(1,6) = = .556

1/15 + no data + no data
P(5,1) = = .067

If the number of examinees per subgrcup is unequal, the proportions
are combined by a weighted arithmetic mean and the corresponding entry in
the accounting-matrix is equal: to the number of examinees for which data
existed. Elements in the P-matrix are set equal to .5 if the correspond-
ing entry in the accounting-matrix is equal to zexn. In this example,
the P-matrix is

.500 .867 .500 .467 .933 .556
.133 .500 .500 .567 .889 400
P-matrix = .500 .500 - .500 .333. .400 .222] .

.533 .433 .667 .500 .800 .667 N
.067 .111 .600 .200 .500 .133
EAAA .600 .778 .333 .867 .500

After the P-matrix has been formed, scale values per stimulus are
computed as if all examinees had responded to all items using computa-
tional procedures detailed in Edwards (1957). Using Thurstone's Model V
scaling procedure, the resultant scale values from the P-matrix given in

step 5 and those obtained from using all 407 examinees over all items
are

] ]

1 2 3 4 5 6
(3/10/15) .000 .442 .688 .172 1.184 .184

Norm(5) .000 .075 .638 .215 1.023 .193
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APPENDIX A

Listing And Expanded Writeup Of Computer Program For Estimating Test
Parameters Through Multiple Matrix Sampling And For Approximating Norma-
tive Distributions With The Negative Hypergeometric Distribution




68-

A Fortran IV Program For Estimating Test Parameters Through Multiple Matrix

Sampling And For Approximating A Normative Distribution Of Test Scores With
The Negative Hypergeometric Distribution

The negative hypergeometric distribution provides a reasonably good
fit for a variety of test score distributions when the test score is the
number of correct answers. The negative hypergeometric distribution is
a function of the mean test score, the variance of the test scores and
the total number of items in the test. The first two parameters may be
approximated efficiently by multiple matrix sampling. Furthermore, the
negative hypergeometric distribution with parameters estimated by multiple
matrix sampling can be used satisfactorily to approximate a normative
distribution of number correct test scores.

In multiple matrix sampling, a set of K test items is randomly div-
ided into subsets of items. Each subset of items is then randomly assign-—
ed to a group of examinees. Although each examinee receives only a pro-
portion of the complete set of test items, the statistical model permits
one to estimate the mean and variance of the total test score distribution
for all examinees over the complete set of test items. Multiple matrix
sampling is an efficient procedure for appro ‘mating a normative distri-
bution when it is not possible or is economic..lly unfeasible to administer
the complete set of K items to all examinees in the testable population.

The Fortran IV program which approximates the normative distribution
with the negative hypergeometriC‘distribution is relatively machine-
independent and has been implemented easily on an IBM 7040, IBM S360/50,
IBM S360/91 and a UNIVAC 1108. The program has been designed to approx-—
ijmate test score distributions involving at maximum 500 items. However,
this restriction may be easily modified. The number of subtests and

number of examinees per subtest are limited only by the amount of computer
time available. :

Organizatidn Of Control Cards And Data Cards

columns (all integers right-justified)
Card Set 1 (1 card) 1-72 Alphanumeric title of project
Card Set 2 (1 card) 1-5 Integer number of examinee groups
6-10 Integer number of items in each
subtest
11-15 Integer number of examinees per
subgroup
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columns (all integers right-justified)

51-55 ' Punch 00000 if there is only one for-
mat card by which all
item scores are to be
inputted

Punich 00001 if there is to be a dif-
ferent format card for
each item—-examinee sam—

ple within a data set N

Format Card Set Standard Fortran IV format punched /
in columns 1-72 on each card and i

(k cards, optional) enclosed in parentheses for inputting

item scores for each examinee in each
item-examinee sample. The number of
format cards may not exzceed 9 for
each item-examinee data set. The
first card after the format cards
must contain END OF FORMAT in col-
umms 1-13.

Example:- (5X,25F1.0) -
. _END OF FORMAT
Data Card Set , The responses of each examinee per
item-examinee sample ...L be se—
(k cards, optional) quenced by examinee group and within

each group by examinee.

#Acceptable Input Data Structures

Plam 1 Plan 2 Plan 3
Fortran Samrce Deck Fortran Source Deck Fortran Source Deek
Card Set 1 Card Set 1 Card Set 1
Card Ser 2 . Card Set 2 Card Set 2
Format Card Set Format Card Set L
Data Cards Data From Sampke 1

Format Card Set =2
Data From Sampike 2
Format Card Set X
‘Data From Sampke t
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Plan 4

Plan 5

Fortran Source Deck

Card Set 1

Card Set 2

Format Card Set

Card with no. of examinees
and items for subtest 1
Data from subtest 1

Card with no. of examinees
and items for subtest 2
Data from subtest 2

Card with no. of examinees
and items for subtest t
Data from subtest t

Fortran Source Deck
Card Set 1
Card Set 2
Format Card Set 1
Card with no. of examinees
and items for subtest 1
Data from subtest 1
Format Card Set 2
Card with no. of examinees
and items for subtest 2
Data from subtest 2

Format Card Set t
Card with no. of examinees
and items for subtest t
Data from subtest t

Plan

Plan

Plan

1: Mean and variance of test scores are inputted on card set 2.
No item scores are required.

2: Mean and variance of test scores are to be estimated from item-

examinee samples.

All item scores in each item-examinee sample

are organized in the same manner on the data card and are to be
inputted with one format card.

3: Same as Plan 2 with exception that item scores for each item-
examinee sample are not organized on data cards in same manner.

Each sample requires an individual set of format cards_descfibing
how item scores are organized for that particular sample.
Plan 4: Same as Plan 2 with exception that number of examinees
of items per subtest are not constant across subtests.
card is used for each data set.

and number
Same format

Plan 5: Same as Plan 3 with exception that number of examinees
of items per subtest are not constant across subtests.

different format cards are used for each data set.

and number
In addition,
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APPROXIMATIUN OF FREQUENCY DISTRIBUIION OF TLST SCORES
BY NEGATIVE WYPFRhPOMtTRIL DISTRIBUTION

L
¢
C  REFERENCE
t

LORDL, F.M, AND NOVICK, M.K, STATISTICAL ITHEORIES OF MENTAL Tk5T
SCORES. READING, MASS, ADDISON-WESLEY,1968,CHAPTER 2.

DAVIL: M, SHOEMAKER

" NTS = NUMBFR CF 1TEMS PER SUBTEST

; NTP = NUMBER OF ITEMS IN TEST ITEM POPULATION

C NSM = WNUMBER OF SUBTESTS

¢ NS = NUMBER OF EXAMINEES PER 5uBGRoUP

i NSP = NUMBER OF EXAMINEES 1IN EXAMINEE PCPULATION

{ YBAR = 5T IMale OF MEAN TEST SCORE

C VAR = ESTIMATE OF TEST SCORE VARJANCE

‘:n*u***u***ﬁﬁn***u**“u***u*#“&*u*nﬁua**u**é**ﬁ***ﬁﬁ&*&*ﬁ%*uuﬁaﬂn*«**
COMMON DUMMY (500),P(500)
DIMENSION TITLE(18)

e

- INPLT PROBLEM PARAMETERS

C

1000 READ (5,1,:ND=%000) (TITLECL), D=1, 18),
{NSM,NTS,NSS,NTP,NSP,XBAR,;VAR,NGPH, NF MT
WRITE (659) (TLITLE(CL),1=1,18)
IF ( IF{X(VARuloﬂo;)-.NE,30 ) WRITE (6,9) XBAR,VAR .

G

C ESTIMATE MEAN AND-VARIANCE FROM SUBTESTS

C ‘ B ‘ :
IF (IFIX{VAR%1000,).EQ,0) CALL POOL(NSS,NIS,NSM, NTP, XBAR,VAR ,NF
IF ( NSP .EQ., 0 ) NSP=1000.
WRITE (6,10) NSP

C

c  COMPUTE PARAMETERS FOR NEGATIVE HYPERGEOMETRIC DISTRIBUTION

C

S=NTP
A21= (S/(S5=1,))#(1,-XBARK# (S~ ~XBAR)/Z (S#VAK))
IF ( A2% .GT., 0. ) GO TO 40
WRITE (6,7) A21
GO TO 1000
40 CONTINUE
A={(=1.,+1.7A21)2XBAR
BE==A=1.+5/421 '

_7E;fa
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5L0G1=0,
SL0G2=0.
C=A.8
o 5g I=1.NTP
SLOG1=SLOG1+ALOG1g(B~I+1,)
20 SLOG2=SLOG2+AL0G10(Cel+1,)
C=10.##(S5L0G1=-5L0G2)
WRITE (6,3) A21,A,8,C
C
¢ COMFUTE NEGATIVE HYPERGEOMETRIC DISTRIBUTION
)
N3=NTP+1
WKRITE (6,4)
CK=9,
Do 10Q [=1s,N3
Kal=1
CALL NEGHGR (KsA»BsCrSeNSPIHX ,HFX)
cK =CK+HX
P(l)sHX
, WRITE (6,2) K,HY,HFX,CK
109 CONTINUE
L
C PLOT NEGATIVE HYPERGEOMETRIC DISTRIBUTION
&
[F ( NGPH .ER, 0 ) CALL PLOT (NTP)

G0 TO 1000
5000 WRITE (6,8)
cALL EXIT
1 FNRMAT (18A4/519%,2+10,0,215)
2 FORMAT (110,3F30.7) : : .
3 - FGRMAT (/7H KR21 =F12.3, 6X.3HA =F15.7/25X,3HB =F15. 7/25%, 3HC =E18,
177777)
4 FORMAT (///75% bHsLORE.zzx.dvh(x> 26X, 6HN§H(X).24X 6HCUM HX//)
5 FORMAT (1H1,18A477)
7 FORMAT (43H KR21 NEGATIVE OR zERO ., DATA SET ABORTED.bX.bHKR?l =
1710.4) ,
8 FORMAT (1H-,2p0%,19HALL lNPUT PROCESStD>
9 FORMAT (//7H XBAR =k12,8//7H VAR =F12.3)
10 FORMAT (/4X,3HN =18)

END
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SUBROQUTINE NEGHGR (K,A,B,C,S,NSUB,HX,HFX)
. NEGATIVE HYPERGEOMETRIC FUNCTION
C

i K JEW., 0 ) GO 10 150
SLUG1=0,
51.0G2=0.
§L063=0,
SLUG4A=0.
PC 100 I=1,K
SLOG1=sLOG1+AL0NG10(S=141,)
SLOG2=SLUG2+ALDGIDCA+T~1.)
SLULS=SLOGS+ALOGIO(B=T1+1.)
10) SLOG4=SLUG4+ALUG10(FLOAT (L))
HX=Cw10.#8 (SLNG1+SLOG2-SL0GS-SLOGAY)
125 HF X=HX#*NSUY
RETURN
150 HX =C
6o 10 12°
END

SUBROUTINE RDFMIT (FMT)

(W)

¢ SUBRGUTINE FOR INPUTTING VARIABLE FORMAT

C

¢ INPUT STRUCTURE L .

C FORMAT. (ENCLOSED IN PARENTHESES) COL 1-72
C CONTINUE ON CARD 2 IF NECESSARY

C CONTINUE ON CARD 3 IF NECESSARY

C ETC, e '

C MAXIMUM NUMBER OF FORMAT CARDS IS 9
C '"END OF FOURMAT! NECESSARY ... PUNCH IN COLUMNS 1 = 1.
¢ _

DIMENS ION FMT(200)

DATA END/IHEND/

N=1

Do 100 1=1,10

M=N+17

READ (5,1) (FMICJ),J=NyM)

IF ( FMT(N) ,EQ. END ) RETURN
100 N=N+18
WRITE (6,2)
STOP
FORMAT (18A4) o
FORMAT (37H saw# EXCESSIVE NUMBER OF FORMAT CARDS)

EnD

N
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00

SUBROUT INE POOL (NSUB.NITEMS;NSAM;NTP,XBAR.VAR.NFMT)

TELRMINATION OF POOLED ESTIMATE OF POPUYLATION MEAN TEST SCORE AND

RIANCE

CUMMON P(500),X(500)
NIMENSION FMT(200)
IF ¢ NFMT . EQ. U ) CALL,RDFMT(FMT)
WhilTE (6,1) !
NTEST=NSUB&«NITEMS i
SESTM=0,
SFSTv=p.
NsM=(
SUGHT=¢.
B0 1000 1=1,NSAM
1IF ¢ NFM1 _NE, 0O ) CaLL RDFMT(FMT)
TF ( NTEST .EG. O ) READ (5,6) NSUB,NITEMS
sy=0,
5YY:U.
G 20 JI 1 NI TEMS
P {JI=0.,
pLoS0A J=1,MgUs
Y=9g.
DO 910 K=1.NITEMD
K)Y=P(K)+X(K)
YzY+X(K)
5Y=3Y+Y
SYY=SYY+YnY
XBR=SY/NSU
VRI(SYY=5YuSY/NSUB)/NSUB
5 Q=0,
O 920 J5L)N]1TEMS
PP =P (J)/NSUY

 SPQR=SPQ+PPa(1,~PP)

NSM=NSM+NSUS
hhHF NSUB#NITEMS
STM=NTP#XBR/NITEMS ' ‘

SIV‘(NSUB*NTP*((NTP 1. )uVR-(NrP NlTbM&)*bPQ))/
1(NlTEMb*(NITth 1.)8(NSUB=1.,))
SESTM=SESTM+ESTMaWGHT

SESTV=SESTVSESTVaWGHT

SWGHT=SWGHT+WGHT

WEKIIE (6,2) 1,ESTM,ESTV

CONT INUE

XBAR=SESTHM/SWGHT

VAR=SESTV/SWGHI

IF ( NSM .LT. %00 ) VARzVAR&(NSM=1,)/NSM

WRITE (6,3) XBAR, VAR ' _
RE TURN _ - g
FORMAT (///724X, ?1thT1MATb OF PARAM&TER///BX 6HSAM LE, 10X, AHMEAN -
1,16X,8HVARIANCE///) - e
FORMAT (110,2F20.7) - fy' } O T S U S
FORMAT (/7/14H POOLED XBAR “FZOQ?/(ISHvROOLEDVVKRTANCE{=FI6.7/A/)1
FORMAT (219). E L

t yb




SUBROUTINE PLOT (NITEMS)

REzAL N

COMMON N(500),P(500)

DiMENSION BCD(10)

LATA BCD/1HO,1H1,1H2,1HS, 1H4.1Hb 1H6,1H7 ,1H8,1HY/
LATA QLKoHOT-XX/lH v iH . 1HXY/

G
C LOCATE MAXIMUM VALUE FOR H(X)
C

NMN=N]TEMS+q

7=0,

L0 90 1=1,NNN

1IF ( Pq¢ly GT. T ) T=P(l)
50 CONTINUE

c
C DETERMINATION OF APPROPRIATE SCALE FACTOR FOR H(X) PLOT
C

J=0

Do 69 I=1.6

Kzl=1

J=T&10, sk . '
IF ( J ,EU, 0 ) GO TO 690

J=K-1 : ~
WRITE (6.,3) J
Go Y0 70 -
60 CONTINUE
c ‘ .
C SCALE H(X) BEFORE PLOTTING
/0 DO 75 1=1,NNN
75 PeL)=P(1)2l10 2ad
C - ) '
. C  LABEL ORDINATE
C

WRITE (6,1)

PO 00 I=1,100
200 N(I)=BLK

N(101)=BCD(2)

WRITE (6:2) (N(J),»J=1,101)

NNSO

DO 50 121,10

L6 975 . J=1,10
»75 N(NN+J)=BCD(1)

NN=NN+10
550 CONTINUE

N(1lo1)=8CL(1)

WRITE _(6,2) (N(J),J=1,101):

pn 580 I=1, 101 10 ¢

UG 990 J=15 10 -

Ked=1 ' ’ . a . .
590 N(I*K) BLD(J) ' ) L ow
580 CON[INUE . e R N




N¢lol)y=8Lu(1)
WHITE (6,2) (N(Jy,Jd=4,101)
ne 9% 1=1,101
w9S  N(L)=DOT
WEITE (6,2) (NCJ),J=1,101)

¢ pPLEl! VALUES 0F SCALED H(X)

CO 100 I1=1,NNN
Az l=1
L=P(l)#100.+1.5
pe 10 J=1,101
105  N(J)I=BLK
140 J=1,L
119 Hk(JI)=XX
pe 120 J=11,101,10
[F ¢ N(J)Y EQ, BLK ) N(J)=DOT
120 CUGNTINUE
WRITE (6+4) K,(NC(J),J=1,101)
100 CONTINUE B
C .

i
4
{
;;

{{ END UOF GRAPH -

C -
PO 900 [=1,101

900 N¢l)=DOT

WRITE (6,2) (N(J)»J=1,101) -

RETURN '

FCRMAT (1i11,50%, 40HPROPORT JON oF POPULATIQN RECEIVING SCORE//) )

t ORMAT (14X%X,101A1)

FORMAT (/7775%X,19HH(X) SCALED BY 10 El3,9H IN GRAPH//)

t OKMAT (110,4%X.101A1)

END .

1
2
S
4

81
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Sample Output

Card 000000000L11111111122222222223333333333444444444455555555556

column 1234567890123456789012345678901234567890123456/8901234%67890
FIRST YRAR WORD SPELLING PROJECT SHOEMAKER/ZOKADA

00005000000000000050 . 00000
(10%X,10F1,0) ,
END OF FORMAT

0001800010

01 1 1 1011111110
02 14 1 1111101011
03 1 1 1110100000
04 1 1 1110000000
05 1 1 00E0000000
06 1 1 1101010001
07 2 1 1110101010
08 2 1 1100100000
0% 2 1 0000011010
10 2 1 N100000000
11 2 1 1111101010
12 2 1 1001001000
13 3 1 0100100000
14 3 1 0111100010
1% 3 1 onooonoononn
16 3 1 000000000
17 3 1 1101001110
18 2 1 0000000000
0001400010

01 1 2 1111110011
0Z 1 2 1011100000
03 1 2 1100101000
04 1 2 1111110000
05 1 2 1011110010
06 12 1110110000
07 2 2 1010100000
08 2 2 1111110010
09 2 2 1101111010
10 2 2 1111110000
11 3 2 0001110000
12 3 2 1111311100
13 3 2 1101000000
14 3 2

0011110000




Card 000000000111111111122222222223333333333{44444444455555595556
column 123456789012349678901°34567890123456789012345678901234567890

0004300010

01 4 3 2101111101
n2 1 3 0101001000
05 1 3 1001011101
04 1 3 0040010000
05 1 3 1411111411
g6 1 3 11p1110190
0y 2 3 0400000100
P8 2 3 0111111110
neg 2 3 1p00000000Q
10 2 3 1001000000
11 3 3 11111311100
12 3 3 1111000100
13 3 3 0000000000
0001300010

01 31 4 1101001100
pe 1 4 0010u020p0
03 1 4 “ii111v0110112
g4 1 4 1111111111
0% 1 4 1111021113
06 2 4 olilplolceO
07 2 4 13111ur111
ng 2 4 goponupopo
09 2 4 0110001100
10 3 4 0011001000
11 3 4 11110011110
12 3 4 0041004000
13 3 4 opno000000Q
0001200010

01 1 5 1001001010
02 1 5 cooogLo0Nno.
08 1 5 1000000000
04 1 5 gooQouaooo0
0 2 5 0101111010
06 2 5 1110010100
07 2 5 0000000000
08 2 % 0000000000
09 3 5 1011111100
10 3 5 0000000000
11 3 5 ooQ000G0000
12 3 5 coonuvaooQo

83 L
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APPENDIX B

Computer Program For Simulating Multiple Matrix Sampling
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Computer Program For Simulating Multiple Matrix Sampling

The computer program for simulating multiple matrix sampling is de-
scribed in detail in Chapter V. A listing of the Fortran IV program is
given in this appendix for those readers who may want to implement the
model on the computer configuration available to them. The program given
herein was written originally for a UNIVAC 1108 and a modified version
has been implemented on an IBM $360/91. In modifying the program for the
§360/91, the only changes made were those involving the uniform (.00 to
.99) random number generator RUNIF. On the 1108, RUNIF is initialized by
RINITL. Calling RINITL with BASE as the argument causes BASE to be used
as the starting value or seed in the algorithm used by RUNIF in generating
uniform random numbers. Because RINITL is specific to UNIVAC 1108, readers
should consult the local computing center staff to determine the subpro-
gram and calling procedures at that installation comparable to the RINITL/
RUNIF system. The conversion process was relatively simple for the $360/
91 and it is anticipated that such will be the case with other hardware
and software systems. Input values to the program are made on one para-
meter card. The organization of the card is described at the beginning
of the program listing. Examples of parameter cards are found on page
97 of this appendix. Sample output from the program is given in Chapter
V.
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C
, C»1-ﬁ#####“#%*%#““""%#““#*““#%““**‘*",#%#“#“####““##G*Q‘#““*####Q#““l"‘"“b##_##
C
C o
C COMPUTER SIMULATIUN Of ITEM=EXAMINEE SAMPLING
C DAvID M, SHOEMAKER
C
C
¢ PARAMETER CARD (THERE IS JUST ONE)
G ;
L COLUMNS (ALL INTEGERS RIGHT=JUSTIFIED)
C .
C 0i-03 INTEGER NUMBER OF ITEMS IN TOTAL TEST
C
C 04~09 DESIRED MEAN TEST SCORE IN POPULATION

C
[
v
C
C
Cc
U
C
o
C
C
C
C
C
C
C
C
C
C
v
C
C
C
L
C
C
C
C
C
C
C
C
C
C
C
v

(MUST BE SPECIFIED, WITH DECIMAL POINT PUNCHED ON CARD)

10-15 DESIRED VARIANCE OF TEST SCORES 1IN POPULATION
(WiTH DECIMAL POINT PUNCHED ON CARD)

NOTE ... IF VARIANCE 1S OMITTED, RELIABILITY MUST
BE SPECIFIED.

16-21 'DESIRED VARIANCE OF ITEM DIFFICULTY INDICES OVER
: POPULATION OF EXAMINEES. THE ITEM DIFFICULTY
INDEX FOR ITEM I 1S THE PROPORTION OF EXAMINEES
ANSWERING ITEM I CORRECTLY. ‘
(MUST BE SPECIFIED WITH DECIMAL POINT PUNCHED ON CARD)

WITH SKEWED DISTRIBUTIONS, VARIANCE OF ITEM
DIFFICULTY INDICES IS ASSUMED TO BE EQUAL TO ZERO.

2227 | DESIRED RELIABILITY OF TEST SCORES IN POPULATION
(WITH DECIMAL POINT PUNCHED ON CARD)

NOTE ... IF RELIABILITY IS OMITTED, VARIANCE MUST
BE SPECIFIED.

28-31 INTEGER NUMBER OF SUBTESTS IN ITEM=EXAMINEE SAMPLING

32-35 INTEGER NUMBER OF ITEMS PER SUBTEST
(UONSTANT ACROSS SUBTESTS)

36=39 INTEGER NUMBER OF EXAMINEES PER SUBTEST
(CONSTANT ACROSS SUBTESTS)

40-43 INlEGEB~NUMBER.OF'INDEPENDENT REPLICATIONS OF ITEM-
EXAMINEE SAMPLING PLAN ’

44 SAMPLING PLAN FGOR ITEMS
0 = SAMPLING WITH REPLACEMENT

(USED‘NHEN TK IS GREATER THAN K)

1 = SAMPLING W.IHOU] REPLACEMEN)

sussﬁ”wagﬁgyk‘ré LESS THAN OR EQUAL TU K)

86




aenaeia e ST AATCT BB IOCE,

=82~

2 = SAMPLING WITHOUT REPLACEMENT BUT SUBJECT
TO RESTRICTION THAT ITEMS OCCUR WITH EQUAL
FREQUENCY AMONG SUBTESTS
(USED WHEN TK IS GREATER THAN K) i

45 INTERMEDIATE PRINTOUT OPTION
0 = NO INTERMEDIATE PRINTOUT
1 = INTERMEDIATE PRINTOUT WANTED
46 NEGATIVE HYPERGEOMETRIC DISTRIBUTION OPTION
U = NO NEG., HYPER. DIST. WANTED :
1 = COMPUIE NEG. HYPER. DIST, :
47 DEGREE OF SKEWNESS IN NORMATIVE DISTRIBUTION
1 = NORMALLY DISTRIBUTED
2 = POSITIVELY SKEWED
3 = NEGATIVELY SKEWED
48=53 SEED FOR UNIFORM RANDOM NUMBER GENERATOR (ODD NUMBER)
55 GENERATE ITEM DIFFICULTY INDICES
0 = GENERATE NEW ITEM DIFFICULTY INDICES
1 = USE ITEM DIFFICULTY INDICES GENERATED BY
RESTRICTIONS PREVIOUS DATA CARD
MAXIMUM NUMBER OF [1{:M8 1S 150 (EASILY MODIHI1ED, HOWEVER)

ITEMS SCORED DICHOTOMQUSLY

PROGRAM WILL PROCESS REPEATED PARAMETER CARDS (NUMBER LIMITED ONLY
BY AMOUNT Of COMPUIER TIiME ALLOCATEWD)

ﬁﬂﬂﬂﬁﬁ&“ﬂ**ﬂﬂ“ﬂ#ﬁﬂ*H%ﬂﬂﬂ#ﬂﬂ“ﬂiﬂﬂ##ﬁ%ﬂ&&ﬂﬁﬂ&ﬁ#*ﬂ“ﬂﬂn#%ﬂﬂﬁ#ﬂﬂﬂ%“ﬂ*ﬂﬂﬂﬂﬁ*ﬂ

REAL NsMsHMPOP

COMMON N(190),M(150),LT(3000)

COMMON /8LOCK1/ YBAR,YSD,MPOP,S8POP.KPOP,NDIST, BASE, INTPRT
COMMON /8LOCK2/ RND(150) '

COMMUN /BLOCK3/ P(150),Q¢150),NSUB

2000 READ (5,1,END=5000) KPOP,MPUP,VPOP,PVAR, A20, NT,IPT,NSPT,NREPS,
1 ISAMP, INTPRT ,NHPER,NDIST, BASboISAVt
[F ¢ NDISI .GT. 1 ) PVAR= 0.
WRITE (6,2) BASE,MPOP,VPOP,KPOP,A20,PVAR, NT IPT,NSPT,NREPS,
1 ISAMP, NHPER,NDIST, INTPRT

; lNlTIALIZE KANDOM NUMBER GENERATOR (UNIQUE TO . UCC)

h

[KCALL RINITL(BASE) 8% - ‘

N
L A



30

55

(@ IR

/0

o @}

NSUB=Q
CHECK ON PARAMETERS

It ¢ ISAMP .NE. 1 ) GO TO 30

IF ¢ NT#IPT ,G!. KPOP ) GO T0 5"

IF ¢ A20 .L1. 0, .OR, A20 ,GT, 1. ) GQ TC 55

TE ( NDIS1 .GT. 3 ,OR. NDIST LT, 1 ) GO T0 55

IF (IFIX(A20*1000.).E0 0.AND.IFIX(VPOP#1000,),EQ.0) GO TO »H
[F ([F IX(MPOP#1000. ) .GE.KPOP#1000) GO TO 55

1F ( PVAR .LT, .2 ) GO TO 70

WRITE (6,3)

Gp TO 2000

COMPUTE NECESSARY PARAMETERS

'E'“'MPOV*(KPOP—MPOP)-KPUP*KPOP*PVAR ;
(F ¢ IFIX(VPOP)Y EQ. 0 ) VPOP TEMP/(KPOP=(KPOP=1,)#A20)
SFOP=SQRI(VPOP)

WRITE (6,13) SPUP

IF ( ISAVE .Eq. 1 ) Gp TO 102

GENERATE 1TEM DIFrlCULTY INUIL&S (PROPORTION OF EXAMINEFS ANbNtRlMG
ITEM CORRECTLY)

IF (IFIX((KPOP~ MPOP)#lUOO.) EQG.0) GO T0.55
N1=1000. :
PBAR= MPOP/KPOP

DO 173 [=1,KPOP

173 GC1)=0.

65
66

O

74
C

[N

[e R

IF ¢ IFIX(PVAR#1000.) ,GT, 0 ) GO TO 66
DO 65 1=1,KPOP - |
P(I)=PBAR

GO 10 102 |

PSD=SQRT(PVAR)

Do 100 1J=1,100

LO 74 1=1,KPOP

CALL RANDND (2)
QCl)=Z22P5SD +PBAR

1IF ¢ @¢l) LT, 0., ) Q¢
IF ¢€.Q¢l)- GT. 1. ) Qf«

1)
¢

DETERMINE INITILAL WEAN AND VARIANCE OF GENERATED ITEM DIFFICULTY

INDICES

SP=0,
sPP=0, . o , . B
0081 I=1,KPOP S L o o ’

PP=Q(1) J o,
SP=SP+PP ‘ P 88

ke




G '
o COMPUTAT[ON oF PONsTANTS FOR GENERATION 0F LDGNORMAL DISTRIBUIION

ERIC

$1

t2

w4

90
100
103
104

110
102

YSU =0,

-84

SPP=SPP+PPRPP
PVR= (SPP-SP#SP/KPOP) /KPOP
CVR=SQRT(PVAR/FPVR)

SCALE VARIANCE OF [TEM DIHFICULTY INDICES TO STANDARD

Sp=0.

grpP=Q,

o 82 1=1,KPOP
Q(1)=Q(1)8CVR

Ifr ¢ Q1Y .GT, 1. ) Q(l)y=1.
FEZQ (D)

SP=SP+PP

SPP=SPP+PP aPP
PVR=(SPP~-SPaSP/KPOP)/KPOP

SCALE MEAN OF {TEM DIFFICULTY INDICES

L4=8SP /K pup=-pHaAR
sP=0,
SPP U

pe 4 I‘
Gely= Q(I
1F € Q¢
Ir ¢ Q]
PP=Q(Cl)
SPESP+PP
SPP=SPP+PF aPP

1 KP()P

)=D4

) JLT,. 0, ) Q@
) 6T, 1. ) @

-~ o~
Y—
[

o

"PVR=(SPP~- SPan/KPOP)/KPDP

PiR=SP/KPUP

D2=ABS(PVAR=PyYR)

N3 =ABS (PBAR=PBR)

[1=(D1+.0005)=1000,

12=(P2+.0002)«+1000,

[3=(D3+.,000)#1000, .

iF ( 12 .LE. % .AND, I3 ,LE, 5 ) GO TO 109

IF ¢ 12 .GE, 11 ) GO TO 1900

p1=D2

nnp 90 1=1,KPNP

PCI)=R (L)

CONTINUE

DO 104 [=1,KPOP

PCL)=QCl)

NG TOP=KPUP =1

Be 110 I= 1-N§TUP

Juz=l el ‘
Do 110 J=Jdd, KPUP ‘ ,

¥ 1F'x<P<1)»1ooo ) Ge, IFIX(P(J)#41000,) ) GO TO 110
TEMP PCJ) - _ , -
P(JY=P(I])

P(l)STEMP

CONT INUE : .

IF ( INTPRT LEUL 1) leTE (6, 4) (P(l)rl‘l.KPOPY‘

et o SRS TSI NS AT

R
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If ¢ NDIST EQ. 1 ) GO TO 111

IF ¢ NDIST ,EQ. 3 ) MPOP=KPOP=-MPOP
YVAR=ALOG(VPOP/ (MPOP#MPOP )+1,)
YBAR=ALOG(MPOP)-YVAR/2,
YSU=SQRT(YVAR)

C
C COMPUTE ROUNDPING VALUES FOR EACH TEST SCORE INTERVAL
.
111 IF ¢ ISAVE .EQ. 0 ) CALL ROUND
C REPLICATION OF ITEM=-EXAMINEE SAMPLING PARALIGM
Lv)
SxM=0,
SXS=0.
SxXM=Q.
SXXS5=0,
po /g0p I[JK=1,NREPS
CALL AbLLOC (NT:lPTnISAMP)
1F. ¢ INTPRT ,EQ, 0 .GO 7O 113
WRITE (6:5)
J=0
N1=NT#IpPT
LG 132 1=1,N1,1PT
KK=1+[PT~1
Jad+l - .
112 WRITE (6:86) J,(LT(K),K=],KK)
113 - cALL POO{, (NsplrIpToNTD'XBARtXVAR)
Xsb=g,. ,
IF ( XVAR .GT, 0, ) XSD=SQRT(XVAR)
IF ( INTPRT ,EQ., 1 ) WRITE (6,7). IJK XBAR XSD
SXM=SXM+ XBAR :
SXS=EXS+XSD
SXXM=SXXM+ XBAR#XBAR
SXXS=SXXS+XSD#X5D
C .
C COMPUTATION OF CONSTANTS FOR NEGATIVE HYPERGEOMETRIC DISTRIBUTION OPTIO
)

[F ( NHPER .EQ. 0 ) GO 10 7000

A21=(KPOP/(KPOP=1.,))#(1,.-XBAR# (KPUOP~XBAR)/(KPOP~= XVAR))

IF ( A21. .G1, 0., ) GO TO 120

KRITE (0.8) A21

GO '0 2000 :
120 A=z(=1,+1./A21)#XBAR

Bz=A=1.,+KPOP/A21

- S '061=0,

51..0G2=0,

C=zA+B ' ‘ : o R i

DO 140 I=1., KPOP , R

SL.OG1=SLOG1+ALOG10(B=T1+1,) St R
140 sSLoOG2s SL0&z+AL0u1o<c-1+1 )y

C=10.,##(SLUGL~ bLOGZ) R

[Rk(lc GENERATION OF NEGATXVE HYPERGEOMET”tﬁhleRiEUfiQﬂ557<}ff5f5 v
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NZIEKPOP+L

UK=0,

LN .-16g 1351+N3

K=1=14

L ALL NEGHUR(K, A,B,C,HX) |
CK=CK+HX

pielTece,1y) K,HX.CK

CON1INUE

RARS =SXS/NREPS

hAHM'aXM/NRkPS : ! ;
_urs FART((SXXS=- :XSuSXS/NRka)/NRtﬁsy
GEM= SuRT((&xXM-sXM*bXM/NREPS)/NRFPS)

GO 10 ?OUU

WRITE (6012)
CALLEXTT :

FURMAT (15 4}6 0, 4[4 41
FORMAT (lRH]PRDHLEM Nn. /7
17%,F8.3//74X/ BHVARIANCE,3X, F 4
2rs. 5//4X.6HVAR(P).5X.F8.5////1X. TH1]
34X ,2HNT» 5%, 14 /74X, 3H1PT, 4x.l4//4h“, -
414/77/9H SNIT(th///4X-1dH1TEM bAMPLlefPLANv':'
5 HYPERGEUMETRIG, 3%, 127/74X, 22HNUHMA Ive: UISTRIHU
6RMEDTATE PRINTOUT,17//7)
FORMAT (28R sw#s ERROR ON PARAMETER CARD///12x.
11 mF 0 ON PARAME‘LRS) R R R I I L
FURMAT - LY ITE

JAX; 2AHNEGATIVE
i 16//4X,21HINTE

Oh//29H'Nt&U'MUR&
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SUBROUTINE POOL (NSPT,IPT,NT,X8AR)XVAR)
¢ .
¢ DETERMINATION OF POOLED ESTIMATE OF POPULATION MEAN TEST SCORL AND
¢ VARIANCE
C

RE AL MPOP
COMMON P(150),X(150),L7¢(3000)
COMMON /BLOCK1/ YBAR.YSD.MPOP.SPOP.KPUP.NDIST.BASE.IPRT
DIMENSION TEST(150)
IF ¢ IPRT EQ. 1) WRITE (6,1)
SESTM=0,
SESTvV=sQ.
NEM=0
DO 1gLp 1=1sNT
Sy=pQ.
sYY=0,
DO 508 K=1»1IPT
508 F(K)=0,
ISTART=IPT#(]=1)+1
I1STOP=[PTa]
D %00 J=1,NSPI
CALL DATA (TEST)
LL=0
DC 505 K=IsTARI,ISTOP
KK=LT(K)
LL=LL+1
50% X(LL)Y=TEST(KK)
Y=0.
DO 510 K=1.1PT
T=X(K)
P(K)YsSP(K)+!
540 Y=sY#+T
SY=S5Y+Y
w0 SYY=SYY+YaY
XBR=SY/NSPT
VR=(SYY=SY#SY/NSPT)/NSPT
sPQ=0, ‘
DO 920 J=1,IPT
PP=P (J)/NSPT
%20 SPQ=SPQ+PPR(1l,=PP)
NSM=NSM+1 .
ESTM=KPOFP#XBR/IPT A
ESlv:(NSPTaKPoP!((KP0P~1.)9VR-(KP0P~1PI)~SP0))/(lPT#(lPT-l.)4
1 (NSPT=1,)) h
SESTM=SESTM+ESTM
SESTVESESTV+ESTV
ES1S=0,

1F ¢ ESTV ,GT, )y ESTS=SQRT(ESTV)

0. '
(f ( ESTV ,LT, 0, ) ESTS=~1,#SQRT(ABS(ESTV))
1 ) WRITE (6,2) 1,ESTM,ESIV,ESTS

{F ¢ IPRT ,EQ.
1000 CONTINUE
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¥IhAR=SESTM/NSM
XVAR=SESTV/NSH

veNSPTaNSM
I ¢ M LT, 500 ) XVAR=XVAR#(M=1.)/M
HE TURN

i ORMAT (///38%X»22H ESTIMATE OF PARAMETER///9X, 6HSAMPLE» 10X,
1 4HMEAN,16X,8HVARTANCE, 12X, 12HSTANDARD UkV//)

FORMAT (110,3F20.7)

f.AD

93
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SUBKOUTINE DATA (X)

¢  GENERATION UF 1TEM SCORES ANp TEST SCORE FUR HYPOTHETICAL EXAMINEE
¢

REAL MPOP

INTEGER TSCORF

COMMON /BLOCKL/Z YHAR.YSD.MPOP.SPOP.KPOP,NUISlpBAS&.INTPRT

COMMON /BLOCKR2/ RND(150)

COMMON /BLOCK3/ P(190),Q¢(150),NSUB

DIMENSION X(150)

C :
¢ GENgRATE TOTAL TEST SCORE
C
NSUBsNSUB+1
CALL RANLDND (2)
GG 10 (215,220,220) »NDIST
' 215 TEMP=7#S5POP+MPOF

GO 10 230
220 TEMP=EXP(Z#YSL+YBAR)
230 1F € TEMP LT, 0, ) TEMP=0,
IF ( TEMP .GT, FLOAT(KPQOP) ) TEMP=KPOP
wh=2TEMP+1,
IF ( kK Gl KPOP ) KK=KPOP
. TSCORE=TEMP+ (KK=RND(KK)) -
IF ( TSCUKE .LT. 0) TSCORE=0
1¥F ¢ TscokEeE ,Gl. KPOP ) T1SCORE=KPUP |
v ( NDIST ,EQG. 3 ) ISCORE=KPOP=TSCORE
t '
., GENFRATE ITEM SCORES FOR EXAMINEE
C
Lo 240 J=1,KPOP
240 x(J)=0, '
I+ ( TSCOURE ,EW, 0 ) GO Tg 300
IF ( TSCORE .LI. KPOP ) GO 70 248
Do 242 J=1,KPOY
242 x(J)=1,
GG TO 300
248 KOUNT=0
Ne 250 J=1.KPOP
IF ( IFIX(QCJ)#1000,) .GT. IFIX(P(J)al00O0.,) ) GO TO 250
FOUNT=KOUNT +1
I ( KOUNT .GT, TSCORE ) GO TO 300
Xx(J)=1.
250 CONTINUE
nno 260 J31,KPOP
Ir ¢ IFIx(xcd)) EQ. 1) GO TO 260
KOQNT:KOUNT+1 . .
o 1F° ( KOUNT ,GT. TSCORE ) GO TO 300
X(J)=1,
260 CONTINUE
$00 DO 320 J=1,KPOP
. 320 Q(J)T(R(J) #(NSUB=1,)eX(J))/NSUB
“E TURN

A o ' 94#
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SUBROUTINE NEGHGR (K, A,8,CrHX)
S NEGATIVE HYPERGEOMETRIC FUNCTION

REAL N»MeMPOP
COMMON N(150),M(150),LT(3000)
CUMMON /BLOCK1L/ YBAR.YSD.MPOPoSPUP.KPOP»NUIS[.BASE.INTPHI
IF { K JEQ. 0 ) GO TOo 150
S=KPOP
51 0G1=0.
SL0G2=0,
SL0OGY=q.
$L064=0,
Lo 100 L=1,K
SLUGl=SLOG1+ALOGlo(S-I*1.)
61.0623SLOG2+AL0G10(A+]=1,)
SlUGS:SLOGé+ALOGlO(B'I*1.)
100 GLOGA=SLOG4+ALOGLO(FLOAT (1))
Hx=C“10.*i(SLOG1+SLOG2'SLOG3'SLOG4)
RE TURN
1y HX=C
KETURN
FnD
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SUBROUTLiNE ALLOU (NT,iFT,ISAMP)
C
¢ RANDOM ASSIGNMENT OF ITEMS TO SUBTESTS

C .
LOMMON X(3$00),LT(3000)
COMMON /BLOCK1/ YBAR,YSD,MPOP, SPOP,KPOP,NDIST,BASE, INTPRT
DIMENSION L(150),KNTR(150)
£0 200 I=1,KPOP
KNTR(I)=0
100 L(I)s=sl
NN=NT#IPT
v ( ISAMP ,EQ, 2 ) GO TO 200
1306 K=0 : ,

DO 150 I=1,N

165 R=z=RUNIF(BASE)
JJER#KPOP+1,
IF ¢ JJ LT, 1 ) JJ=1
IF ¢ JJ GT. KPUP ) JJ=KPOP
IF ( L(JJ) .GT. 0 ) GO TO 170
GO TO 165

170 LTCLy=L(JJ)
K=K+1
IF ¢ ISAMP .NE. 1 ) GO TO 180
L(JJd)=s=L(JJ)

GO TO 150
186 IF ¢ K ,LT. IPT ) GO TO 185
KU

L LU 188 LLEL.KPUR
183 LO11)F1ABSTLOLL))
GG TO 159 T
185 L (JJ)==L(JJ)
150 CONTINUE
RETURN
200 NMULT=NN/KFOP
IfF (IFIX((FLOAT(NN)/KPOP)*lo.).NE.IFIX(ELOAT(NMULT)*lO.)) GOTO400
K=0
NSTUP=NN=IPT
0o 300 I=1,NSTOP
210 K=RUNIF(BASE)
JUER#KPOP+1,
IF ( JJ LT, 1 ) Ju=1
iF ( JJ GT, KPOP )} JJ=KPOP
(F ( L(JJ) .GT. O . AND. KNTR(JJ) +LT. NMULT ) GO TO 220
Ge TO 210 ' - f
220 LT(L)=L(Jd)
K=K+l
KNTR(JJ)SKNTR(JJI) *+1
IF ( K LT, IP!I ) GO TO 250
K=0

R
T "%9 8
. ‘&L
. M .
.



LR YA

Le 230 J=1,KPOP

L(J)=IABS(L(J))

O TO 300

LiJJd)==L(JJ)

CONTINUE

L0 $50 I=1,KPQOP

IF ( KNTK(1) .EQ, NMUYLT ) @0 TO 350

MSTUR=NSTUP+1

LTINSTOP)=

CONTINUE

Riz | URN

i NN JWT. KPOP ) ISAMP=0

1F ( NN .EQ. KPOP ) ISAMPal

WRLITE (6,1) ISAMP

G0 TO 13vu

L ORMAT (29YH TK NOT INTEGER MULTIPLE OF K//30H ITEM=SAMPLING SWITCH
 RESET TOLSZ/7) ,
b
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SUBROUTINE RANDND (X)

REAL MPOF

CUMMON /8LOCK1/ YBAH.YSD.MPOP.SPOP.KPOP.NDIST.BASE.lNTPRT
1D JMENSION C(290).c1(90),Cz(ab).c3(45),C4(60).cb(10)
LGUIVALENCE (VIAIL.C(ZOO)).(Cl(l)nC(l)).ﬁCZ(l).C(91)).
1 (03(1).C<176)).(C4(1):C(221)).(05(1).0(281))

DATA C1/

1- .2l1_2!.6.l3|.6:-3'.3,05!.6006!
2 .65 .6,.6,.8,.8, ,8,1.,1.,1.5,0.,
30-:0.90o’0.00-|0.l.1.o11.1'o11
4 l1l.1.'1’02’o2l.2.!2"2,.3"3'
5 -41'4'o4n'4r.4-o41.5,v51.5,.5,
6 o5!,6,-7l,7,./',7,-7’.8'.8’.9,
7 .9-.9..9n1.;1.v1.1n1.111.1n1.2l1.2p
B 1|2|1o3v1|3|1l4p114’1l5’1.6.1|7|1o8’o0l
(o] '4,,4,'7,.9,,9,.911o101~1’1-1'1'1 /
DATA C2/ ‘
1 1-3.1.311o3-1-511-Si1-301e4n1-4olo6n1-61
2 1.6,1.6,1.6,1.b,].7,1.7,1.7,1.8,1.9,1.9,
K 1-9-1-931.9.1-911.9:1-9n2-32.12-32.:
4 21'2.'2.’2!1'2'1’2'1'2!1.2'1'2!1’2!2'
5 2'20202!2-2'203’2.3'2o3'2.4.2.4,2.5’2.6,
6 ./.1.1;1-3..4.1..1.9'1-4..9..8;.b;
7 obl1'211'611n7p|3’1.05'20.1.8,2.2,!2":
8 2,2,2.,3,2,4,2.1,. y2.7+0,,2.6,2.8,2.9,
9 ,94321650/, ,946409288, .9494 6939, .99£5784878, .955556/64 /
LATA C3/

,958489620, .961388536, 9644198279, ,966788825, .969367756,
.971936598, ,974474970, , 976942627, 979212915, . 981233554,
.983249373, ,985020795, .986448314, .967806989, .989110415,
,990207369, .991260517, .992236959, ,993158205, ,994021949,
994845636, .995501310, ,995889789, 996268373, .997300203,
,942278196, ,945572077, ,948551446, ,951165313, .954986 329,
.956691427, ,960485017, .963804134, .966571775, .968916970,
.971.291678, ,974201251, .976132812, 978422883, , 980579525,
.983065206, ,984224076, .986325151, .98714158%, .988832851

ATA C47/ . : '

. 989490775, ,990781611, .991730598, ,9935063286, .993813410,
' 964262546, 995110801, 995805552, 996077866, .9964138334,
,973,.996..992.,92n..998,,982.;990,;990.;985;.959.

. 942’ .994’ .986’ .9855 . 890’ .988 ,.-9801 .983. ',9_77' .843;
.973a.9750.974:.978;o755).970;.501}.971p-968'.9671
4-6444448-6.4086308:10-1111111111114.?357140
16.666666.7;5104139.5.5743498.5.2286616.25.o
5-9645244'4.395120104o920813213u9631786033.333333 /

CATA C5/ '

1 3.4427955-3.7/48844.3.6020289-4.1690656;50.o

2 3.1592514.100.:3.2956424.3.0324898.2.9143782 /

SGN=1,

Li=RUNLIF (BASE)

(F (U .LT., .5 ) SGN==-1,

OO~ ON DWaH

VONOTN DUNH

Q U=RUNIF (BASE)
ERIC 1v2=1000.#U




st srer et A A IR TR

Ivi=1lyes10
v2100.#U= 1#FLOAT(1IVZ)
ir (U JGE. .79 ) GO TO 10
vz (C(lvi+l)+v) a5GN
RE TURN
190 (i (U JGk. .94 260 10 20
x=(C(IV2=7/0Q)+V)=«SGN
WETURN .
20 I+ ( U .Ge. VTAIL ) GO TO 30

21 NEWES
IF (U .GE, C(J) ) GO TO 21
If (U L1, C(J*30) ) GO TQ 23
UzRUNIF(BASE)
X=(C(y=30)+,14U)aSGN
RETURN
2.8 U=sRUNIF (dASE)
VERUNIF(SASE)
U1=AMIN1Cya V)
U2=AMAX1(U,V)
1F ( U2 .GE. C(Je6D) ) GC TO 25
44 %= (C(J=30)+.18U1)#SGN
< TURN
) =-.5*(.1*U1—.1)u(2.¢C(J*60)+,1*U1+.1)
11 ( (EXP(W)Y=1.)#C(J+90)~U2+U1 ) 23,23,24
S0 U1=RUNIF (BASE) '
U2=zRUNIF (BASE)
5zUlsUlet)2al? .
If ¢ 5 .Ge. 2, ) GO 10 30
T=SQRT((9,=2,.#ALOG(S))/S)
IF ¢ ulsl .LE. 3. ) GO0 . TO 32
X=Ul#TaSGH « ’
e TURN
$2 F ( U2eT ,LT, 3, ) GO TO 30
X=U2uaTaSun :
i TURN
ENU
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SUBROUT T RUOuND

i ROUNING SU OUTTNE FUR NORMAL AND LOOLGHNURMAL FPUNCTIUNS, Ak A
C BETWLEN ADJAUENT INTEGER SCORES IS COMPUTEL BY MEANS GF Twr
’ . TRAFPEZOID FOWMULA. THE ROUNDING VALUE I8 THAT CONTINUOUS TEST
S GCORE SUCH THAT ONE-HALF OF THE ARFA WITHIN THE SCORE INTERVAL
ABQOVE THAT POINT,

RLAL MPor .
COMMON /HLOCK1/ YBAR, YSo, 4POP.SPOP.KPOP.NulST;BA:t.IPRI
COMMON Z8LDCK2/ RNU(150)

IMENSION YCO101)

GELTA=.01
YVAR=YSD#YSD
VRPUR=SPQOP#SPOP
F1=9.,141592/
GG TO (40,90,50), NDIST
40 - ChND131./5QRT(2.4P1#VPOP)
CND2=2,4VROP
GO 10 60 '
50 CLN1=1./30RT (2. “PI#YVAR)
CLN2=2.2YVAR
60 CONTINUE

SAREA=0, : S -
IF ¢ IPRT .kQ. 1 ) WRITE (6,7)
DO 100 (=1.KPOP
N=1-1
DO 10 J=1,101
Ked=1
"X=N+KwDELTA
GO 10 (180,131,131), NDIST
130 Y(J)'CNDlﬁtXP(-((X ~MPOP)##2)/CND2)
GO TO 150 :
131 IF x LGT, 0, ) GU TO 135
GO 10 150
135 Y(J)'(CLNi/X)ubXP(-((ALUG(X)nYBAR)#*Z)/CLNZ)
150 CONTINUE®
1IF, (1PRT LEQ. 1) WRITE (6,5%) N,(Y(J),J=1,101,10)
N1=Y{(1)+10000.
N2=Y(101)«10000. ‘
1f ¢ N1 .GT. o .OR, N2 ,GT. 0 ) GO 7O 153
RNDCI)=N+.5
- GL 10 100
1%3 AREA=0,
Do 1%% J=2,100
155 AREA zASEak+Y (J) ‘s




p— S S
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LrbAZDELI A ((Y(1)+Y(101))/2.+«AREA)
CARE AZSAKEA+AREA

20,
Y 1ar U=1,100
l\:\J"'l

PP+ ((Y(J)+Y(K))#DELTA/2,)/AREA
v (P L,L1. .5 ) GO T0 160
KANDCTY=sNvJabFL T
e Y0 1040

{0 CUNT INUE
wirl 1k (6+38)
chALL EXIT
104 CUNY INUE
17 C IPRT ,eGQ, U ) RETURN
WRITE (6,6) SAREA
WRITE (6,1)
Lo 20y I1=1.KPOP

J=1=1
&0 Wiklllke (6,2) J,HNU(!):I
RE TURN :
! FORMAT (/77274 ROUNDING KULE SCOREl5thHROUNprX:5HSCURb//)
b FORMAT (17%,15,+10.2,9X, 15)
N FGRMAT (341 PROBLEM IN ROUND SUBR EXIT CALLED)
> FURMAT (1X,13,11F8,4)
) FORMAT (7H AREA =F15.7//)
7 FORMAT (//723H UlSTRIBU[lUN DRDINATES//

i SX s 1HN, IX,2H ., 0,6%, 2h 1,6X:,2H, dnbx 2H.3,6X, 2, 4,6X,2H .5
26%X22H,6,6K,2H., / 6Xs2H.B8,6X,2H, 95X, 38H1. U//)
\D
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